中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (9): 1683-1695 Previous Articles   Next Articles

• Review •

Structure and Supramolecuclar Properties of Arylacetylene Macrocycles

Li Jie, Huang Pengcheng   

  1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • Received: Revised: Online: Published:
PDF ( 1164 ) Cited
Export

EndNote

Ris

BibTeX

Arylacetylene macrocycles (AEMs) that contain shape-persistent backbones and allow the attachment of (functional) side groups at defined positions have attracted much attention since their invention. Due to the large π-conjugated system and the flexible bonding points at the ring, arylacetylene macrocycles are especially valuable candidates for the construction of complex supramolecular architectures. This review covers the recent progress in the research on the supramolecular properties of arylacetylene macrocycles, including aggregation in solution, liquid crystal behavior, one-dimensional self-assembly and supramolecular-assembled monolayer at the substrate surface or at the solid-liquid interface. The investigation method is introduced. The relationship between the molecular structure and the supramolecular property of AEMs are elaborated, and potential applications of AEMs are indicated. It will be helpful for the preparation of novel materials with desired size, shape and functionality through rational molecular design. Contents 1 Introduction
2 Aggregation of arylacetylene macrocycles in solution
3 Liquid crystal behavior of arylacetylene macrocycles
3.1 Nematic liquid crystal
3.2 Columnar liquid crystal
4 One-dimensional self-assembly of arylacetylene macrocycles
4.1 Influence of molecular structure
4.2 Influence of fabrication conditions
5 Monolayer of arylacetylene macrocycles at the substrate surface or at the solid-liquid interface
5.1 Influence of molecular structure
5.2 Influence of solvent and substrate
5.3 Influence of guest molecule
6 Conclusion and outlook

CLC Number: 

[1] 胡文平(Hu W P), 刘云圻(Liu Y Q), 朱道本(Zhu D B). 世界科技研究与发展(World Sci-Tech R & D), 2004, 26 (3): 1-15
[2] Toksoz S, Acar H, Guler M O. Soft Matter, 2010, 6 (23): 5839-5849
[3] Hoeben F J M, Jonkheijm P, Meijer E W, Schenning A P H J. Chem. Rev., 2005, 105 (4): 1491-1546
[4] Höger S. Chem. Eur. J., 2004, 10 (6): 1320-1329
[5] Höger S. J. Polym. Sci. Part A: Polym. Chem., 1999, 37 (15): 2685-2698
[6] Höger S, Bonrad K, Rosselli S, Ramminger A, Wagner T, Silier B, Wiegand S, Häuβler W, Lieser G, Scheumann V. Macromol. Symp., 2002, 177 (1): 185-191
[7] 程晓红(Cheng X H), 鞠秀萍(Ju X P), Höger S. 有机化学(Chinese J. Org. Chem.), 2006, 26 (5): 733-743
[8] Bong D T, Clark T D, Granja J R, Ghadiri M R. Angew. Chem. Int. Ed., 2001, 40 (6): 988-1011
[9] Yamaguchi Y, Yoshida Z. Chem. Eur. J., 2003, 9 (22): 5430-5440
[10] Shetty A S, Zhang J S, Moore J S. J. Am. Chem. Soc., 1996, 118 (5): 1019-1027
[11] Tobe Y, Utsumi N, Kawabata K, Nagano A, Adachi K, Araki S, Sonoda M, Hirose K, Naemura K. J. Am. Chem. Soc., 2002, 124 (19): 5350-5364
[12] Zhang J S, Moore J S. J. Am. Chem. Soc., 1992, 114 (23): 9701-9702
[13] Shu L J, Mayor M. Chem. Commun., 2006, (39): 4134-4136
[14] Shu L J, Müri M, Krupke R, Mayor M. Org. Biomol. Chem., 2009, 7 (6): 1081-1092
[15] Lin C H, Tour J. J. Org. Chem., 2002, 67 (22): 7761-7768
[16] Boden B N, Hui J K H, MacLachlan M J. J. Org. Chem., 2008, 73 (20): 8069-8072
[17] Tobe Y, Utsumi N, Kawahata K, Naemura K. Tetrahedron Lett., 1996, 37 (52): 9325-9328
[18] Sonoda M, Yamaguchi Y, Tahara K, Hirose K, Tobe Y. Tetrahedron, 2008, 64 (50): 11490-11494
[19] Sugiura H, Takahira Y, Yamaguchi M. J. Org. Chem., 2005, 70 (14): 5698-5708
[20] Höger S, Bonrad K, Mourran A, Beginn U, Möller M. J. Am. Chem. Soc., 2001, 123 (24): 5651-5659
[21] Wettach H, Höger S, Chaudhuri D, Lupton J M, Liu F, Lupton E M, Tretiak S, Wang G J, Li M, De Feyter S, Fischer S, Förster S. J. Mater. Chem., 2011, 21 (5): 1404-1415
[22] Lahiri S, Thompson J L, Moore J S. J. Am. Chem. Soc., 2000, 122 (46): 11315-11319
[23] Dingenouts N, Klyatskaya S, Rosenfeldt S, Ballauff M, Höger S. Macromolecules, 2009, 42 (15): 5900-5902
[24] Zhao D H, Moore J S. J. Org. Chem., 2002, 67 (11): 3548-3554
[25] Tobe Y, Nagano A, Kawabata K, Sonoda M, Naemura K. Org. Lett., 2000, 2 (21): 3265-3268
[26] Tobe Y, Utsumi N, Nagano A, Naemura K. Angew. Chem. Int. Ed., 1998, 37 (9): 1285-1287
[27] Rosselli S, Ramminger A D, Wagner T, Silier B, Wiegand S, Häuβler W, Lieser G, Scheumann V, Höger S. Angew. Chem. Int. Ed., 2001, 40 (17): 3137-3141
[28] Fritzsche M, Jester S, Höger S, Klaus C, Dingenouts N, Linder P, Drechsler M, Rosenfeldt S. Macromolecules, 2010, 43 (20): 8379-8388
[29] Rosselli S, Ramminger A, Wagner T, Lieser G, Höger S. Chem. Eur. J., 2003, 9 (15): 3481-3491
[30] Gielen J C, Heyen A V, Klyatskaya S, Vanderlinden W, Höger S, Maan J C, De Feyter S, Christianen P C M. J. Am. Chem. Soc., 2009, 131 (40): 14134-14135
[31] Chandrasekhar S. Liq. Cryst., 1993, 14 (1): 3-14
[32] Chandrasekhar S, Prasad S K. Contemp. Phys., 1999, 40 (4): 237-245
[33] Lehn J, Malthete J, Levelut A. J. Chem. Soc., Chem. Commun., 1985, 1985 (24): 1794-1796
[34] Chen S S, Yan Q F, Li T, Zhao D H. Org. Lett., 2010, 12 (21): 4784-4787
[35] Fischer M, Lieser G, Rapp A, Schnell I, Mamdouh W, De Feyter S, De Schryver F C, Höger S. J. Am. Chem. Soc., 2004, 126 (1): 214-222
[36] Frischmann P D, Guieu S, Tabeshi R, MacLachlan M J. J. Am. Chem. Soc., 2010, 132 (22): 7668-7675
[37] Zhang J S, Moore J S. J. Am. Chem. Soc., 1994, 116 (6): 2655-2656
[38] Mindyuk O Y, Stetzer M R, Heiney P A, Nelson J C, Moore J S. Adv. Mater., 1998, 10 (16): 1363-1366
[39] Höger S, Enkelmann V, Bonrad K, Tschierske C. Angew. Chem. Int. Ed., 2000, 39 (13): 2267-2270
[40] Höger S, Cheng X H, Ramminger A, Enkelmann V, Rapp A, Mondeshki M, Schnell I. Angew. Chem. Int. Ed., 2005, 44 (18): 2801-2805
[41] Höger S, Weber J, Leppert A, Enkelmann V. Beilstein J. Org. Chem., 2008, 4: art. no. 1
[42] Seo S H, Jones T V, Seyler H, Peters J O, Kim T H, Chang J Y, Tew G N. J. Am. Chem. Soc., 2006, 128 (29): 9264-9265
[43] Kato T, Mizoshita N, Kishimoto K. Angew. Chem. Int. Ed., 2006, 45 (1): 38-68
[44] Kato T. Science, 2002, 295 (5564): 2414-2418
[45] Shimura H, Yoshio M, Kato T. Org. Biomol. Chem., 2009, 7 (16): 3205-3207
[46] Kumar S. Chem. Soc. Rev., 2006, 35 (1): 83-109
[47] González-Rodríguez D, Schenning A P H J. Chem. Mater., 2011, 23 (3): 310-325
[48] Kim J, Lee E, Kim M, Sim E, Lee M. J. Am. Chem. Soc., 2009, 131 (49): 17768-17770
[49] Ryu J, Oh N, Lee M. Chem. Commun., 2005, (13): 1770-1772
[50] Cantin K, Rondeau-Gagné S, Néabo J R, Daigle M, Morin J. Org. Biomol. Chem., 2011, 9 (12): 4440-4443
[51] Mössinger D, Chaudhuri D, Kudernac T, Lei S B, De Feyter S, Lupton J M, Höger S. J. Am. Chem. Soc., 2010, 132 (4): 1410-1423
[52] Cheng X H, Heyen A V, Mamdouh W, Uji-i H, De Schryver F, Höger S, De Feyter S. Langmuir, 2007, 23 (3): 1281-1286
[53] Nakao K, Nishimura M, Tamachi T, Kuwatani Y, Miyasaka H, Nishinaga T, Iyoda M. J. Am. Chem. Soc., 2006, 128 (51): 16740-16747
[54] Wang D G, Hsu J F, Bagui M, Dusevich V, Wang Y, Liu Y, Holder A J, Peng Z H. Tetrahedron Lett., 2009, 50 (18): 2147-2149
[55] Kim J, Lee E, Lee M. Macromol. Rapid Commun., 2010, 21 (11): 980-985
[56] Seo S H, Chang J Y, Tew G N. Angew. Chem. Int. Ed., 2006, 45 (45): 7526-7530
[57] Jiang J, Tew G N. Org. Lett., 2008, 10 (20): 4393-4396
[58] Savage R C, Mativetsky J M, Orgiu E, Palma M, Gbabode G, Geerts Y H, Samorì P. J. Mater. Chem., 2011, 21 (1): 206-213
[59] Palermo V, Morelli S, Simpson C, Müllen K, Samorì P. J. Mater. Chem., 2006, 16 (3): 266-271
[60] Balakrishnan K, Datar A, Zhang W, Yang X M, Naddo T, Huang J L, Zuo J M, Yen M, Moore J S, Zang L. J. Am. Chem. Soc., 2006, 128 (20): 6576-6577
[61] Zang L, Yen M, Balakrishnan K, Yang X M, Moore J S. Journal of Nanoengineering and Nanosystems, 2010, 223 (3/4): 139-147
[62] Naddo T, Che Y K, Zhang W, Balakrishnan K, Yang X M, Yen M, Zhao J C, Moore J S, Zang L. J. Am. Chem. Soc., 2007, 129 (22): 6978-6979
[63] Naddo T, Yang X M, Moore J S, Zang L. Sens. Actuators B, 2008, 134 (1): 287-291
[64] Lei S B, Heyen A V, De Feyter S, Surin M, Lazzaroni R, Rosenfeldt S, Ballauff M, Lindner P, Mössinger D, Höger S. Chem. Eur. J., 2009, 15 (11): 2518-2535
[65] Grave C, Lentz D, Schäfer A, Samorì P, Rabe J P, Franke P, Schlüter A D. J. Am. Chem. Soc., 2003, 125 (23): 6907-6918
[66] Krömer J, Rios-Carreras I, Fuhrmann G, Musch C, Wunderlin M, Debaerdemaeker T, Mena-Osteritz E, Böuerle P. Angew. Chem., 2000, 112 (19): 3623-3628
[67] Grave C, Schlüter A D. Eur. J. Org. Chem., 2002, 2002(18): 3075-3098
[68] Schmaltz B, Rouhanipour A, Räder H J, Pisula W, Müllen K. Angew. Chem., 2009, 121 (4): 734-738
[69] Pan G B, Cheng X H, Höger S, Freyland W. J. Am. Chem. Soc., 2006, 128 (13): 4218-4219
[70] Tahara K, Lei S, Mössinger D, Kozuma H, Inukai K, Van der Auweraer M, De Schryver F C, Höger S, Tobe Y, De Feyter S. Chem. Commun., 2008, 2008 (33): 3897-3899
[71] Mena-Osteritz E, Bäuerle P. Adv. Mater., 2006, 18 (4): 447-451
[72] Chen T, Pan G B, Wettach H, Fritzsche M, Höger S, Wan L J, Yang H B, Northrop B H, Stang P J. J. Am. Chem. Soc., 2010, 132 (4): 1328-1333
[73] Kudernac T, Shabelina N, Mamdouh W, Höger S, De Feyter S. Beilstein J. Nanotechnol., 2011, 2: 674-680
[74] Borissov D, Ziegler A, Höger S, Freyland W. Langmuir, 2004, 20 (7): 2781-2784
[75] Lei S B, Tahara K, Feng X L, Furukawa S, De Schryver F C, Müllen K, Tobe Y, De Feyter S. J. Am. Chem. Soc., 2008, 130 (22): 7119-7129
[76] Tahara K, Johnson C A Ⅱ, Fujita T, Sonoda M, De Schryver F C, De Feyter S, Haley M M, Tobe Y. Langmuir, 2007, 23 (20): 10190-10197
[77] Tahara K, Okuhata S, Adisoejoso J, Lei S B, Fujita T, De Feyter S, Tobe Y. J. Am. Chem. Soc., 2009, 131 (48): 17583-17590
[78] Tahara K, Furukawa S, Uji-i H, Uchino T, Ichikawa T, Zhang J, Mamdouh W, Sonoda M, De Schryver F C, De Feyter S, Tobe Y. J. Am. Chem. Soc., 2006, 128 (51): 16613-16625
[79] Lei S B, Tahara K, Müllen K, Szabelski P, Tobe Y, De Feyter S. ACS Nano, 2011, 5 (5): 4145-4157
[80] Furukawa S, Uji-i H, Tahara K, Ichikawa T, Sonoda M, De Schryver F C, Tobe Y, De Feyter S. J. Am. Chem. Soc., 2006, 128 (11): 3502-3503
[81] Jester S, Shabelina N, Le Blanc S M, Höger S. Angew. Chem. Int. Ed., 2010, 49 (35): 6101-6105
[82] Tahara K, Lei S B, Mamdouh W, Yamaguchi Y, Ichikawa T, Uji-i H, Sonoda M, Hirose K, De Schryver F C, De Feyter S, Tobe Y. J. Am. Chem. Soc., 2008, 130 (21): 6666-6667
[83] Lei S B, Surin M, Tahara K, Adisoejoso J, Lazzaroni R, Tobe Y, De Feyter S. Nano Lett., 2008, 8 (8): 2541-2546
[84] Furukawa S, Tahara K, De Chryver F C, Van der Auweraer M, Tobe Y, De Feyter S. Angew. Chem. Int. Ed., 2007, 46 (16): 2831-2834
[85] Bléger D, Kreher D, Mathevet F, Attias A, Schull G, Huard A, Douillard L, Fiorini-Debuischert C, Charra F. Angew. Chem. Int. Ed., 2007, 46 (39): 7404-7407
[86] Ziegler A, Mamdouh W, Heyen A V, Surin M, Uji-i H, Abdel-Mottaleb M M S, De Schryver F C, De Feyter S, Lazzaroni R, Höger S. Chem. Mater., 2005, 17 (23): 5670-5683
[87] Mamdouh W, Uji-i H, Dulcey A E, Percec V, De Feyter S, De Schryver F C. 2004, 20(18): 7678-7685
[88] Tahara K, Balandina T, Furukawa S, De Feyter S, Tobe Y. Cryst. Eng. Commun., 2011, 13 (18): 5551-5558
[89] Piot L, Bonifazi D, Samoì P. Adv. Funct. Mater., 2007, 17 (18): 3689-3693
[90] De Feyter S, De Schryver F C. J. Phys. Chem. B, 2005, 109 (10): 4290-4302
[91] Lei S B, Wang C, Yin S X, Wang H N, Xi F, Liu H W, Xu B, Wan L J, Bai C L. J. Phys. Chem. B, 2001, 105 (44): 10838-10841
[92] Lei S B, Tahara K, De Schryver F C, Van der Auweraer M, Tobe Y, De Feyter S. Angew. Chem. Int. Ed., 2008, 47 (16): 2964-2968
[93] Mamdouh W, Uji-i H, Ladislaw J S, Dulcey A E, Percec V, De Schryver F C, De Feyter S. J. Am. Chem. Soc., 2005, 128 (1): 317-325
[94] Ouahabi A A, Baxter P N W, Gisselbrecht J, De Cian A, Brelot L, Kyritsakas-Gruber N. J. Org. Chem., 2009, 74 (13): 4675-4689
[95] Tahara K, Fujita T, Sonoda M, Shiro M, Tobe Y. J. Am. Chem. Soc., 2008, 130 (43): 14339-14345
[96] Zhao T Y, Liu Z X, Song Y B, Xu W, Zhang D Q, Zhu D B. J. Org. Chem., 2006, 71 (19): 7422-7432
[97] Spitler E L, Haley M M. Tetrahedron, 2008, 64 (50): 11469-11474
[98] Traber B, Oeser T, Gleiter R. Eur. J. Org. Chem., 2005, 2005(7): 1283-1292
[99] Rahman M J, Yamakawa J, Matsumoto A, Enozawa H, Nishinaga T, Kamada K, Iyoda M. J. Org. Chem., 2008, 73 (14): 5542-5548
[100] Chan J M W, Tischler J R, Kooi S E, Bulovic V, Swager T M. J. Am. Chem. Soc., 2009, 131 (15): 5659-5666
[101] Schmidt-Mende L, Fechtenkötter A, Müllen K, Moons E, Friend R H, MacKenzie J D. Science, 2001, 293 (5532): 1119-1122
[102] Boden N, Bushby R J, Clements J, Movaghar B. J. Mater. Chem., 1999, 9 (9): 2081-2086
[103] Adam D, Schuhmacher P, Simmerer J, Haussling L, Siemensmeyer K, Etzbachi K H, Ringsdorf H, Haarer D. Nature, 1994, 371 (6493): 141-143
[104] Kumar S, Varshney S K. Angew. Chem. Int. Ed., 2000, 39 (17): 3140-3142
[105] Salonen L M, Ellermann M, Diederich F. Angew. Chem. Int. Ed., 2011, 50 (21): 4808-4842
[106] Nobukuni H, Kamimura T, Uno H, Shimazaki Y, Naruta Y, Tani F. Bull. Chem. Soc. Japan, 2011, 84 (12): 1321-1328
[107] Canevet D, Pérez E M, Martín N. Angew. Chem. Int. Ed., 2011, 50 (40): 9248-9259
[108] Kalsani V, Ammon H, Jäckel F, Rabe J P, Schmittel M. Chem. Eur. J., 2004, 10 (21): 5481-5492
[109] Kawase T, Kurata H. Chem. Rev., 2006, 106 (12): 5250-5273
[110] Li S N, Moorefield C N, Wang P S, Shreiner C D, Newkome G R. Eur. J. Org. Chem., 2008, 2008(19): 3328-3334
[111] Song H, Kirmaier C, Schwartz J K, Hindin E, Yu L H, Bocian D F, Lindsey J S, Holten D. J. Phys. Chem. B, 2006, 110 (39): 19121-19130
[112] Tobe Y, Utsumi N, Nagano A, Sonoda M, Naemura K. Tetrahedron, 2001, 57 (38): 8075-8083
[113] Youngs W J, Tessier C A, Bradshaw J D. Chem. Rev., 1999, 99 (11): 3153-3180
[114] Baxter P N W. Chem. Eur. J., 2003, 9 (11): 2531-2541
[115] Baxter P N W, Dali-Youcef R. J. Org. Chem., 2005, 70 (13): 4935-4953
[116] Baxter P N W. J. Org. Chem., 2004, 69 (6): 1813-1821
[117] Baxter P N W, Al Ouahabi A, Gisselbrecht J, Brelot L, Varnek A. J. Org. Chem., 2011, 77 (1): 126-142
[118] Yamaguchi Y, Kobayashi S, Miyamura S, Okamoto Y, Wakamiya T, Matsubara Y, Yoshida Z. Angew. Chem. Int. Ed., 2004, 43 (3): 366-369
[119] Zang L, Che Y K, Moore J S. Acc. Chem. Res., 2008, 41 (12): 1596-1608
[120] Couet J, Biesalski M. Soft Matter, 2006, 2 (12): 1005-1014
[121] Kim F S, Ren G, Jenekhe S A. Chem. Mater., 2011, 23 (3): 682-732
[122] Jin Y H, Zhang A B, Huang Y S, Zhang W. Chem. Commun., 2010, 46 (43): 8258-8260
[123] Helsel A J, Brown A L, Yamato K, Feng W, Yuan L H, Clements A J, Harding S V, Szabo G, Shao Z F, Gong B. J. Am. Chem. Soc., 2008, 130 (47): 15874-15875
[124] Song Y B, Di C A, Xu W, Liu Y Q, Zhang D Q, Zhu D B. J. Mater. Chem., 2007, 17 (42): 4483-4491
[125] Ono K, Ezaka S, Higashibata A, Hosokawa R, Ohkita M, Saito K, Suto M, Tomura M, Matsushita Y, Naka S, Okada H, Onnagawa H. Macromol. Chem. Phys., 2005, 206 (15): 1576-1582
[126] Ono K, Tsukamoto K, Hosokawa R, Kato M, Suganuma M, Tomura M, Sako K, Taga K, Saito K. Nano Lett., 2009, 9 (1): 122-125
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[7] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[8] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[9] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[10] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[11] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[12] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[13] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[14] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.
[15] Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*. Artificial Metalloenzymes Based on Peptide Self-Assembly [J]. Progress in Chemistry, 2018, 30(8): 1121-1132.