中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (9): 1665-1673 Previous Articles   Next Articles

• Review •

Applications of Graphene Nanocomposites in Electrochemical Biosensors

Song Yingpan, Feng Miao, Zhan Hongbing   

  1. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
  • Received: Revised: Online: Published:
PDF ( 2644 ) Cited
Export

EndNote

Ris

BibTeX

Construction of graphene-based nanocomposite system is an effective approach for the expansion and enhancement of applications of graphene. Owing to the synergy effect of different constituents, the electrical, chemical and electrochemical properties of graphene can be greatly improved, leading to the expansion and enhancement of the electrochemical effects of graphene. Graphene nanocomposites provide a novel and efficient electrochemical platform for the immobilization of oxidoreductase and the realization of direct electrochemistry, which can apply in the design and preparation of third-generation electrochemical biosensors, showing excellent sensitivity and selectivity towards the detection of glucose, cholesterol, Hb, DNA, H2O2, O2 and small biomolecules. This paper reviews the progress of graphene nanocomposites applying in electrochemical biosensors, including the nanocomposites of graphene with precious metal, metal oxide/semiconductor nanoparticle, polymer, dye molecule, ionic liquid and biomolecule. The future development and application prospect of graphene in electrochemical fields are also discussed. Contents 1 Introduction
2 Graphene-inorganic nanocomposite modified electr-odes
2.1 Graphene-precious metal nanoparticle modified electrodes
2.2 Graphene-metal oxide/semiconductor nanop-article modified electrodes
3 Graphene-organic nanocomposite modified electr-odes
3.1 Graphene-polymer modified electrodes
3.2 Graphene-dye molecule modified electrodes
4 Graphene-other nanocomposite modified electrodes
4.1 Graphene-ionic liquid modified electrodes
4.2 Graphene-biomolecule modified electrodes
5 Conclusion and outlook

CLC Number: 

[1] Wang Y, Li Y M, Tang L H, Lu J, Li J H. Electrochem. Commun., 2009, 11 (4): 889-892
[2] Tang L H, Feng H B, Cheng J S, Li J H. Chem. Commun., 2010, 46 (32): 5882-5884
[3] Yang W R, Ratinac K R, Ringer S P, Thordarson P, Gooding J J, Braet F. Angew. Chem. Int. Ed., 2010, 49 (12): 2114-2138
[4] Chen D, Tang L H, Li J H. Chem. Soc. Rev., 2010, 39 (8): 3157-3180
[5] Pumera M, Ambrosi A, Bonanni A, Chng E L K, Poh H L. Trends Anal. Chem., 2010, 29 (9): 954-965
[6] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Electroanalysis, 2010, 22 (10): 1027-1036
[7] Ratinac K R, Yang W R, Gooding J J, Thordarson P, Braet F. Electroanalysis, 2011, 23 (4): 803-826
[8] Kuila T, Bose S, Khanra P, Mishra A K, Kim N H, Lee J H. Biosens. Bioelectron., 2011, 26 (12): 4637-4648
[9] Guo S J, Dong S J. Chem. Soc. Rev., 2011, 40 (5): 2644-2672
[10] Jiang H J. Small, 2011, 7 (17): 2413-2427
[11] Gan T, Hu S S. Microchim. Acta, 2011, 175 (1/2): 1-19
[12] Pumera M. Mater. Today, 2011, 14 (7/8): 308-315
[13] 黄海平(Huang H P), 朱俊杰(Zhu J J). 分析化学(Chinese Journal of Analytical Chemistry), 2011, 39 (7): 963-971
[14] Wang Y, Li Z H, Wang J, Li J H, Lin Y H. Trends Biotechnol., 2011, 29 (5): 205-212
[15] Wu P, Shao Q, Hu Y J, Jin J, Yin Y J, Zhang H, Cai C X. Electrochim. Acta, 2010, 55 (28): 8606-8614
[16] Wu J F, Xu M Q, Zhao G C. Electrochem. Commun., 2010, 12 (1): 175-177
[17] Ambrosi A, Pumera M. Phys. Chem. Chem. Phys., 2010, 12 (31): 8943-8947
[18] Goh M S, Pumera M. Anal.Bioanal.Chem., 2011, 399 (1): 127-131
[19] Zhao J, Chen G F, Zhu L, Li G X. Electrochem. Commun., 2011, 13 (1): 31-33
[20] Ehret R, Baumann W, Brischwein M, Schwinde A, Stegbauer K, Wolf B. Biosens. Bioelectron., 1997, 12 (1): 29-41
[21] Pingarrón J M, Yáñez-Sedeño P, González-Cortés A. Electrochim. Acta, 2008, 53 (19): 5848-5866
[22] Guo S J, Dong S J. Trends Anal. Chem., 2009, 28 (1): 96-109
[23] Wang F, Hu S S. Microchim. Acta, 2009, 165 (1/2): 1-22
[24] Siangproh W, Dungchai W, Rattanarat P, Chailapakul O. Anal. Chim. Acta, 2011, 690 (1): 10-25
[25] Dinckaya E, Kinik O, Sezginturk M K, Altug C, Akkoca A. Biosens. Bioelectron., 2011, 26 (9): 3806-3811
[26] Cao Z X, Zou Y J, Xiang C L, Sun L X, Xu F. Anal. Lett., 2007, 40 (11): 2116-2127
[27] Gutes A, Carraro C, Maboudian R. Electrochim. Acta, 2011, 56 (17): 5855-5859
[28] Bai L J, Yuan R, Chai Y Q, Yuan Y L, Mao L, Wang Y. Anal. Chim. Acta, 2011, 698 (1/2): 14-19
[29] Wang Y, Zhang S, Du D, Shao Y Y, Li Z H, Wang J, Engelhard M H, Li J H, Lin Y H. J. Mater. Chem., 2011, 21 (14): 5319-5325
[30] Li Y M, Tang L H, Li J H. Electrochem. Commun., 2009, 11 (4): 846-849
[31] Lin L, Liu Y, Tang L H, Li J H. Analyst, 2011, 136 (22): 4732-4737
[32] Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25 (5): 1070-1074
[33] Zhou K F, Zhu Y H, Yang X L, Li C Z. Electroanalysis, 2010, 22 (3): 259-264
[34] Baby T T, Aravind S S J, Arockiadoss T, Rakhi R B, Ramaprabhu S. Sens. Actuators B, 2010, 145 (1): 71-77
[35] Dey R S, Raj C R. J. Phys. Chem. C, 2010, 114 (49): 21427-21433
[36] Lu L M, Li H B, Qu F L, Zhang X B, Shen G L, Yu R Q. Biosens. Bioelectron., 2011, 26 (8): 3500-3504
[37] Zeng Q, Cheng J S, Liu X F, Bai H T, Jiang J H. Biosens. Bioelectron., 2011, 26 (8): 3456-3463
[38] Wen D, Guo S J, Wang Y Z, Dong S J. Langmuir, 2010, 26 (13): 11401-11406
[39] Luo X L, Morrin A, Killard A J, Smyth M R. Electroanalysis, 2006, 18 (4): 319-326
[40] Bally M, Vörös J. Nanomedicine, 2009, 4 (4): 447-467
[41] Wang K, Liu Q, Guan Q M, Wu J, Li H N, Yan J J. Biosens. Bioelectron., 2011, 26 (5): 2252-2257
[42] Lu X B, Zhang H J, Ni Y W, Zhang Q, Chen J P. Biosens. Bioelectron., 2008, 24 (1): 93-98
[43] Xu J, Liu C H, Wu Z F. Microchim. Acta, 2011, 172 (3/4): 425-430
[44] Zhang Y, He P L, Hu N F. Electrochim. Acta, 2004, 49 (12): 1981-1988
[45] Fan Y, Lu H T, Liu J H, Yang C P, Jing Q S, Zhang Y X, Yang X K, Huang K J. Colloids Surf. B, 2011, 83 (1): 78-82
[46] Fan Y, Liu J H, Lu H T, Zhang Q. Colloids Surf. B, 2011, 85 (2): 289-292
[47] Zhou K F, Zhu Y H, Yang X L, Li C Z. Electroanalysis, 2011, 23 (4): 862-869
[48] Li L M, Du Z F, Liu S A, Hao Q Y, Wang Y G, Li Q H, Wang T H. Talanta, 2010, 82 (5): 1637-1641
[49] Xu H F, Dai H, Chen G N. Talanta, 2010, 81 (1/2): 334-338
[50] Liu H Y, Deng J Q. Electrochim. Acta, 1995, 40 (12): 1845-1849
[51] Chen X P, Ye H Z, Wang W Z, Qiu B, Lin Z Y, Chen G N. Electroanalysis, 2010, 22 (20): 2347-2352
[52] Holcombe T W, Woo C H, Kavulak D F J, Thompson B C, Fréchet J M J. J. Am. Chem. Soc., 2009, 131 (40): 14160-14161
[53] Yoon H, Jang J. Adv. Funct. Mater., 2009, 19 (10): 1567-1576
[54] Zhang J, Lei J P, Pan R, Xue Y D, Ju H X. Biosens. Bioelectron., 2010, 26 (2): 371-376
[55] Bo Y, Yang H Y, Hu Y, Yao T M, Huang S S. Electrochim. Acta, 2011, 56 (6): 2676-2681
[56] Zagal J H, Griveau S, Ozoemena K I, Nyokong T, Bedioui F. J. Nanosci. Nanotechnol., 2009, 9 (4): 2201-2214
[57] Zhang S Y, Tang S, Lei J P, Dong H F, Ju H X. J. Electroanal. Chem., 2011, 656 (1/2): 285-288
[58] Tu W W, Lei J P, Zhang S Y, Ju H X. Chem. Eur. J., 2010, 16 (35): 10771-10777
[59] Jiang Y Y, Zhang X D, Shan C S, Hua S C, Zhang Q X, Bai X X, Dan L, Niu L. Talanta, 2011, 85 (1): 76-81
[60] Zhang Y, Sun X M, Zhu L Z, Shen H B, Jia N Q. Electrochim. Acta, 2011, 56 (3): 1239-1245
[61] 上官小东(Shangguan X D), 汤宏胜(Tang H S), 刘锐晓(Liu R X), 郑建斌(Zheng J B). 分析化学(Chinese Journal of Analytical Chemistry), 2010, 38 (10): 1510-1516
[62] Sun P, Armstrong D W. Anal. Chim. Acta, 2010, 661 (1): 1-16
[63] Shiddiky M J A, Torriero A A J. Biosens. Bioelectron., 2011, 26 (5): 1775-1787
[64] Silvester D S. Analyst, 2011, 136 (23): 4871-4882
[65] Zhang Q, Wu S Y, Zhang L, Lu J, Verproot F, Liu Y, Xing Z Q, Li J H, Song X M. Biosens. Bioelectron., 2011, 26 (5): 2632-2637
[66] Guo S J, Wen D, Zhai Y M, Dong S J, Wang E K. Biosens. Bioelectron., 2011, 26 (8): 3475-3481
[67] Ng S R, Guo C X, Li C M. Electroanalysis, 2011, 23 (2): 442-448
[68] Shan C S, Yang H F, Song J F, Han D X, Ivaska A, Niu L. Anal. Chem., 2009, 81 (6): 2378-2382
[69] Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25 (6): 1504-1508
[70] Chen S M, Chen S V. Electrochim. Acta, 2003, 48 (5): 513-529
[71] Shie J W, Yogeswaran U, Chen S M. Talanta, 2008, 74 (5): 1659-1669
[72] Tang L H, Wang Y, Liu Y, Li J H. ACS Nano, 2011, 5 (5): 3817-3822
[73] Zhang Q, Qiao Y, Hao F, Zhang L, Wu S Y, Li Y, Li J H, Song X M. Chem. Eur. J., 2010, 16 (27): 8133-8139
[74] Li D,Song S P, Fan C H. Acc. Chem. Res., 2010, 43(5):631-641
[75] Wang Y, Li Z H, Hu D H, Lin C T, Li J H, Lin Y H. J. Am. Chem. Soc., 2010, 132 (27): 9274-9276
[76] Tang D P, Tang J, Li Q F, Su B L, Chen G N. Anal. Chem., 2011, 83(19):7255-7259
[1] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[2] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[3] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[4] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[5] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[6] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[7] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[8] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[9] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[10] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[11] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[12] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[13] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[14] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[15] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.