中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (9): 1656-1664 Previous Articles   Next Articles

• Special issues •

Electrochemical-Based MicroRNA Sensors

Wen Yanli1, Lin Meihua1, Pei Hao1, Lu Na1,2, Fan Chunhai1   

  1. 1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
    2. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • Received: Revised: Online: Published:
PDF ( 1034 ) Cited
Export

EndNote

Ris

BibTeX

MicroRNAs (miRNAs) are endogenous, non-coding single-stranded RNAs that regulate gene expression via degradation or translational repression of their targeted mRNAs. MiRNAs control cell growth, differentiation and apoptosis at a post-transciptional level. Recent evidence has shown that impaired miRNAs expression correlates with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes, which provides a type of promising biomarkers for cancer diagnositics. Therefore, more and more researchers are interested in developing novel miRNAs detection methods. Because electrochemical methods are rapid, sensitive and electrochemical detectors are inexpensive and portable, there has been intense interest in developing new electrochemical sensors for miRNA detection. Here, studies on electrochemical miRNA biosensors are reviewed which contains the principle of DNA biosensor, several signal amplification technologies for biosensor, design of probe for miRNA biosensor and existing electrochemical methods for miRNA detection. Contents 1 Introduction
2 Principle and signal amplification technology for DNA biosensors
3 Design of capture probe for miRNA biosensor
3.1 Locked nucleic acids (LNA) probe
3.2 Peptide nucleic acids (PNA) probe
3.3 DNA nanostructural probe
4 MiRNA direct labeled detection technology
5 Label-free miRNA detection technology
5.1 Direct electrochemistry of miRNA based detection
5.2 Enzyme-based electrocatalytic amplification detection
5.3 Nano-electrode based detection
6 Conclusions and outlook

CLC Number: 

[1] Thévenot D R, Toth K, Durst R A, Wilson G S. Biosens. Bioelectron., 2001, 16: 121-131
[2] Lee R C, Feinbaum R L, Ambros V. Cell, 1993, 75: 843-854
[3] Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G. Nature, 2000, 403: 901-906
[4] Bartel D P. Cell, 2004, 116: 281-297
[5] Esquela-Kerscher A, Slack F J. Nat. Rev. Cancer, 2006, 6: 259-269
[6] Kozomara A, Griffiths-Jones S. Nucleic Acids Res., 2011, 39: D152-D157
[7] Calin G A, Dumitru C D, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K. Proc. Natl. Acad. Sci.USA, 2002, 99: 15524-15529
[8] Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T. Cancer Res., 2005, 65: 9628-9632
[9] Wang Q Z, Xu W, Habib N, Xu R A. Curr. Cancer Drug Targets, 2009, 9: 572-594
[10] Yu L, Todd N W, Xing L, Xie Y, Zhang H, Liu Z, Fang H B, Zhang J, Katz R L, Jiang F. Int. J. Cancer, 2010, 127: 2870-2878
[11] Esquela-Kerscher A, Trang P, Wiggins J F, Patrawala L, Cheng A G, Ford L, Weidhaas J B, Brown D, Bader A G, Slack F J. Cell Cycle, 2008, 7: 759-764
[12] Tavazoie S F, Alarcon C, Oskarsson T, Padua D, Wang Q Q, Bos P D, Gerald W L, Massague J. Nature, 2008, 451: 147-152
[13] Blenkiron C, Goldstein L D, Thorne N P, Spiteri I, Chin S F, Dunning M J, Barbosa-Morais N L, Teschendorff A E, Green A R, Ellis I O, Tavare S, Caldas C, Miska E A. Genome Biol., 2007, 8: R214-R214
[14] Iorio M V, Ferracin M, Liu C G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M. Cancer Res., 2005, 65: 7065-7070
[15] Findlay V J. Open Cancer J., 2010, 3: 55-61
[16] Ma L, Teruya-Feldstein J, Weinberg R A. Nature, 2007, 449: 682-688
[17] Pang Y X, Young C Y F, Yuan H Q. Acta Biochim. Biophys. Sin., 2010, 42: 363-369
[18] Mitchell P S, Parkin R K, Kroh E M, Fritz B R, Wyman S K, Pogosova-Agadjanyan E L, Peterson A, Noteboom J, O’Briant K C, Allen A. Proc. Natl. Acad. Sci. USA, 2008, 105: 10513-10518
[19] Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R. Oncology-basel, 2007, 72: 397-402
[20] Ju J. Bioanalysis, 2010, 2: 901-906
[21] Michael M Z, O’Connor S M, Pellekaan N G V, Young G P, James R J. Mol. Cancer Res., 2003, 1: 882-891
[22] Kong W, Zhao J J, He L, Cheng J Q. J. Cell. Physiol., 2009, 218: 22-25
[23] Wark A W, Lee H J, Corn R M. Angew. Chem. Int. Ed., 2008, 47: 644-652
[24] Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Science, 2001, 294: 853-858
[25] Liang R Q, Li W, Li Y, Tan C, Li J X, Jin Y X, Ruan K C. Nucleic Acids Res., 2005, 33: e17-e17
[26] Miska E A, Alvarez-Saavedra E, Townsend M, Yoshii A, estan N, Rakic P, Constantine-Paton M, Horvitz H R. Genome Biol., 2004, 5: R68-R68
[27] Thomson J M, Parker J, Perou C M, Hammond S M. Nat. Methods, 2004, 1: 47-53
[28] Fang S, Lee H J, Wark A W, Corn R M. J. Am. Chem. Soc., 2006, 128: 14044-14046
[29] Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R. Nucleic Acids Res., 2005, 33: e179-e179
[30] Doyle P S, Chapin S C. Anal. Chem., 2011,83:7179-7185
[31] Cheng Y Q, Zhang X, Li Z P, Jiao X X, Wang Y C, Zhang Y L. Angew. Chem. Int. Ed., 2009, 48: 3268-3272
[32] Zhou Y, Huang Q, Gao J, Lu J, Shen X, Fan C. Nucleic Acids Res., 2010, 38: e156-e156
[33] Cissell K A, Rahimi Y, Shrestha S, Hunt E A, Deo S K. Anal. Chem., 2008, 80: 2319-2325
[34] Driskell J D, Seto A G, Jones L P, Jokela S, Dluhy R A, Zhao Y P, Tripp R A. Biosens. Bioelectron., 2008, 24: 917-922
[35] Driskell J D, Tripp R A. Chem. Commun., 2010, 46: 3298-3300
[36] Nuovo G J. Methods, 2010, 52: 307-315
[37] Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndi M. Nature Nanotech., 2010, 5: 807-814
[38] Venkatesan B M, Bashir R. Nature Nanotech., 2011, 6: 615-624
[39] Junhui Z, Hong C, Ruifu Y. Biotechnol. Adv., 1997, 15: 43-58
[40] 张炯(Zhang J),万莹( Wan Y), 王丽华(Wang L H),宋世平( Song S P), 樊春海(Fan C H). 化学进展(Prog. Chem.), 2007, 19: 1576-1584
[41] Ellington A D, Szostak J W. Nature, 1990, 346: 818-822
[42] Tuerk C, Gold L. Science, 1990, 249: 505-510
[43] Wen Y Q, Peng C, Li D, Zhuo L, He S J, Wang L H, Huang Q, Xu Q H, Fan C H. Chem. Commun., 2011, 47: 6278-6280
[44] Wen Y Q, Xing F F, He S J, Song S P, Wang L H, Long Y T, Li D, Fan C H. Chem. Commun., 2010, 46: 2596-2598
[45] Liu J W, Lee J H, Lu Y. Anal. Chem., 2007, 79: 4120-4125
[46] Zhu C F, Wen Y Q, Li D, Wang L H, Song S P, Fan C H, Willner I. Chem-Eur. J., 2009, 15: 11898-11903
[47] Xiao Y, Piorek B D, Plaxco K W, Heeger A J. J. Am. Chem. Soc., 2005, 127: 17990-17991
[48] Zhou L, Ou L J, Chu X, Shen G L, Yu R Q. Anal. Chem., 2007, 79: 7492-7500
[49] Cho H, Baker B R, Wachsmann-Hogiu S, Pagba C V, Laurence T A, Lane S M, Lee L P, Tok J B H. Nano Lett., 2008, 8: 4386-4390
[50] Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan W. J. Proteome Res., 2008, 7: 2133-2139
[51] Pu Y, Zhu Z, Liu H, Zhang J, Liu J, Tan W. Anal. Bioanal. Chem., 2010, 397: 3225-3233
[52] Lao R J, Song S P, Wu H P, Wang L H, Zhang Z Z, He L, Fan C H. Anal. Chem., 2005, 77: 6475-6480
[53] Xu H, Wu H P, Huang F, Song S P, Li W X, Cao Y, Fan C H. Nucleic Acids Res., 2005, 33: e83-e83
[54] Zhang J, Lao R J, Song S P, Yan Z Y, Fan C H. Anal. Chem., 2008, 80: 9029-9033
[55] Zhang J, Wang L H, Pan D, Song S P, Boey F Y C, Zhang H, Fan C H. Small, 2008, 4: 1196-1200
[56] Zhang L Y, Sun H, Li D, Song S, Fan C H, Wang S. Macromol. Rapid Commun., 2008, 29: 1626-1626
[57] Huang Y Q, Liu X F, Fan Q L, Wang L H, Song S P, Fan C H, Huang W. Biosens. Bioelectron., 2009, 24: 2973-2978
[58] He S J, Song B, Li D, Zhu C F, Qi W P, Wen Y Q, Wang L H, Song S P, Fang H P, Fan C H. Adv. Funct. Mater., 2010, 20: 453-459
[59] Fan C H, Plaxco K W, Heeger A J. Proc. Natl. Acad.Sci.USA, 2003, 100: 9134-9137
[60] Chen X, Wang Y F, Liu Q, Zhang Z Z, Fan C H, He L. Angew. Chem. Int. Ed., 2006, 45: 1759-1762
[61] Li J, Liu X F, Xu H, Song S P, Zhao Y, Fan C H. Rare Metal Mat. Eng., 2006, 35: 274-276
[62] Liu G, Wan Y, Gau V, Zhang J, Wang L H, Song S P, Fan C H. J. Am. Chem. Soc., 2008, 130: 6820-6825
[63] Pei H, Lu N, Wen Y L, Song S P, Liu Y, Yan H, Fan C H. Adv. Mater., 2010, 22: 4754-4578
[64] Pei H, Wan Y, Li J, Hu H Y, Su Y, Huang Q, Fan C H. Chem. Commun., 2011, 47: 6254-6256
[65] Wen Y L, Pei H, Wan Y, Su Y, Huang Q, Song S P, Fan C H. Anal. Chem., 2011, 83: 7418-7423
[66] Ge Z L, Pei H, Wang L H, Song S P, Fan C H. Science China-Chemistry, 2011, 54: 1273-1276
[67] Zhang J, Song S P, Zhang L Y, Wang L H, Wu H P, Pan D, Fan C H. J. Am. Chem. Soc., 2006, 128: 8575-8580
[68] Wan Y, Zhang J, Liu G, Pan D, Wang L H, Song S P, Fan C H. Biosens. Bioelectron., 2009, 24: 1209-1212
[69] Liu X F, Tang Y L, Wang L H, Zhang J, Song S P, Fan C H, Wang S. Adv. Mater., 2007, 19: 1471-1474
[70] Pu F, Huang Z, Hu D, Ren J, Wang S, Qu X. Chem. Commun., 2009, 45: 7357-7359
[71] Zhang L Y, Sun H, Li D, Song S, Fan C H, Wang S. Macromol. Rapid Commun., 2008, 29: 1489-1494
[72] Liu G, Wan Y, Gau V, Zhang J, Wang L H, Song S P, Fan C H. J. Am. Chem. Soc., 2008, 130: 6820-6825
[73] Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Science, 1997, 277: 1078-1081
[74] Zheng X X, Liu Q, Jing C, Li Y, Li D, Luo W J, Wen Y Q, He Y, Huang Q, Long Y T, Fan C H. Angew. Chem. Int. Ed., 2011, 50: 11994-11998
[75] Zhang J, Wang L H, Zhang H, Boey F, Song S P, Fan C H. Small, 2010, 6: 201-204
[76] Liang Z Q, Zhang J, Wang L H, Song S P, Fan C H, Li G X. Int. J. Mol. Sci., 2007, 8: 526-532
[77] Li J, Song S P, Liu X F, Wang L H, Pan D, Huang Q, Zhao Y, Fan C H. Adv. Mater., 2008, 20: 497-500
[78] Storhoff J J, Marla S S, Bao P, Hagenow S, Mehta H, Lucas A, Garimella V, Patno T, Buckingham W, Cork W. Biosens. Bioelectron., 2004, 19: 875-883
[79] Chen P, Pan D, Fan C H, Chen J H, Huang K, Wang D F, Zhang H L, Li Y, Feng G Y, Liang P J, He L, Shi Y Y. Nature Nanotechnol. 2011, 6: 639-644
[80] Li F, Zhang J, Cao X N, Wang L H, Li D, Song S P, Ye B C, Fan C H. Analyst, 2009, 134: 1355-1360
[81] Li H K, Huang J H, Lv J H, An H J, Zhang X D, Zhang Z Z, Fan C H, Hu J. Angew. Chem. Int. Ed., 2005, 44: 5100-5103
[82] Li J, Song S P, Li D, Su Y, Huang Q, Zhao Y, Fan C H. Biosens. Bioelectron., 2009, 24: 3311-3315
[83] Liu G, Sun C F, Li D, Song S P, Mao B W, Fan C H, Tian Z Q. Adv. Mater., 2010, 22: 2148-2150
[84] Li J, Wan Y, Wang L H, Zhu X H, Su Y, Li D, Zhao Y, Huang Q, Song S P, Fan C H. Anal. Chim. Acta, 2011, 702: 114-119
[85] Zhang J, Song S P, Wang L H, Pan D, Fan C H. Nat. Protoc., 2007, 2: 2888-2895
[86] Koshkin A A, Singh S K, Nielsen P, Rajwanshi V K, Kumar R, Meldgaard M, Olsen C E, Wengel J. Tetrahedron, 1998, 54: 3607-3630
[87] Petersen M, Wengel J. Trends Biotechnol., 2003, 21: 74-81
[88] Elayadi A N, Braasch D A, Corey D R. Biochemistry, 2002, 41: 9973-9981
[89] Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik A E, Hentze M W, Muckenthaler M U. RNA, 2006, 12: 913-920
[90] Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z. Nucleic Acids Res., 2004, 32: e175-e175
[91] Lee J M, Jung Y. Angew. Chem. Int. Ed., 2011, 50: 12487-12490
[92] Yin H, Zhou Y, Zhang H, Meng X, Ai S. Biosens. Bioelectron., 2012, 33: 247-253
[93] Singh R P, Oh B K, Choi J W. Bioelectrochemistry, 2010, 79: 153-161
[94] Wojciechowski F, Hudson E, Robert H. Curr. Top. Med. Chem., 2007, 7: 667-679
[95] Fan Y, Chen X, Trigg A D, Tung C, Kong J, Gao Z. J. Am. Chem. Soc., 2007, 129: 5437-5443
[96] Yang H, Hui A, Pampalakis G, Soleymani L, Liu F F, Sargent E H, Kelley S O. Angew. Chem. Int. Ed., 2009, 48: 8461-8464
[97] Seeman N. Nature, 2003, 421: 427-431
[98] Yan H. Science, 2004, 306: 2048-2049
[99] Winfree E, Liu F, Wenzler L A, Seeman N C. Nature, 1998, 394: 539-544
[100] He Y, Ye T, Su M, Zhang C, Ribbe A E, Jiang W, Mao C D. Nature, 2008, 452: 198-201
[101] Goodman R P, Schaap I A T, Tardin C F, Erben C M, Berry R M, Schmidt C F, Turberfield A J. Science, 2005, 310: 1661-1665
[102] Goodman R P, Berry R M, Turberfield A J. Chem. Commun., 2004,1372-1373
[103] Mitchell N, Schlapak R, Kastner M, Armitage D, Chrzanowski W, Riener J, Hinterdorfer P, Ebner A, Howorka S. Angew. Chem. Int. Ed., 2009, 48: 525-527
[104] Pei H, Lu N, Wen Y, Song S, Liu Y, Yan H, Fan C. Adv. Mater., 2010, 22: 4754-4758
[105] Gao Z Q, Yang Z C. Anal. Chem., 2006, 78: 1470-1477
[106] Gao Z, Yu Y H. Sensor. Actuat. B-Chem., 2007, 121: 552-559
[107] Gao Z, Yu Y H. Biosens. Bioelectron., 2007, 22: 933-940
[108] Peng Y F, Gao Z Q. Anal. Chem., 2011, 83: 820-827
[109] Singhal P, Kuhr W G. Anal. Chem., 1997, 69: 4828-4832
[110] Wang H S, Ju H X, Chen H Y. Electroanalysis, 2001, 13: 1105-1109
[111] Lusi E A, Passamano M, Guarascio P, Scarpa A, Schiavo L. Anal. Chem., 2009, 81: 2819-2822
[112] PohlmannC, Sprinzl M. Anal. Chem., 2010, 82: 4434-4440
[113] Zhang G J, Chua J H, Chee R E, Agarwal A, Wong S M. Biosens. Bioelectron., 2009, 24: 2504-2508
[1] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[2] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[3] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[4] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[5] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[6] Deng Wangping, Wang Lihua, Song Shiping, Zuo Xiaolei. Biosensors in POCT Application [J]. Progress in Chemistry, 2016, 28(9): 1341-1350.
[7] Cao Ya, Zhu Xiaoli, Zhao Jing, Li Hao, Li Genxi. Electrochemical Analysis of Tumor Marker Proteins [J]. Progress in Chemistry, 2015, 27(1): 1-10.
[8] Qiu Xiaopei, Zhang Hong, Jiang Tianlun, Luo Yang. Biological and Medical Applications of Duplex-Specific Nuclease [J]. Progress in Chemistry, 2014, 26(11): 1840-1848.
[9] Song Yingpan, Feng Miao, Zhan Hongbing*. Application of Graphene Edge Effect in Electrochemical Biosensors [J]. Progress in Chemistry, 2013, 25(05): 698-706.
[10] Li Jing, Yang Xiaoying*. Applications of Novel Carbon Nanomaterials——Graphene and Its Derivatives in Biosensing [J]. Progress in Chemistry, 2013, 25(0203): 380-396.
[11] Qian Dongjin*, Fu Yanrong. Interfacial Self-Assembly of Viologen-Functionalized Ultrathin Films and Molecular Aggregates [J]. Progress in Chemistry, 2013, 25(01): 46-53.
[12] Song Yingpan, Feng Miao, Zhan Hongbing. Applications of Graphene Nanocomposites in Electrochemical Biosensors [J]. Progress in Chemistry, 2012, (9): 1665-1673.
[13] Dong Haifeng, Zhang Xueji. DNA Biosensors Based on Functional Nanoprobes [J]. Progress in Chemistry, 2012, 24(11): 2247-2254.
[14] Shi Wentao, Di Jing, Ma Zhanfang. Electrochemical Glucose Biosensors [J]. Progress in Chemistry, 2012, 24(04): 568-576.
[15] Wei Yan, Liu Zhonggang, Gao Chao, Wang Lun, Liu Jinhuai, Huang Xingjiu. Electrochemical Sensors and Biosensors Based on Nanomaterials: A New Approach for Detection of Organic Micropollutants [J]. Progress in Chemistry, 2012, 24(04): 616-627.
Viewed
Full text


Abstract

Electrochemical-Based MicroRNA Sensors