中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (9): 1646-1655 Previous Articles   Next Articles

• Special issues •

Treatment of Waste Water Using Metal-Organic Frameworks

Tong Minman, Zhao Xudong, Xie Liting, Liu Dahuan, Yang Qingyuan, Zhong Chongli   

  1. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
PDF ( 2208 ) Cited
Export

EndNote

Ris

BibTeX

Harmful compounds and heavy metal ions in waste water are often biologically toxic and/or carcinogenic. Thus, removal of these substances from waste water in an efficient way has drawn considerable social and scientific concern in recent years. Metal-organic frameworks (MOFs), commonly recognized as “soft” analogues of zeolites, is a new class of nanoporous materials with various topologies, adjustable pore size, controllable properties, large surface area, as well as acceptable thermal stability. MOFs have received much attention in the fields of chemistry and materials science and have shown potential applications with well performance compared to the traditional porous materials including zeolites and activated carbons, especially in separation. Though gas phase separation using MOFs has been extensively studied and reviewed, studies on liquid phase separation are scarce. This review introduces the research progress on waste water treatment using MOFs, in which different harmful substances such as organic dyes, pharmaceuticals, alcohols, aromatic compounds, heavy metal ions and inorganic ions are included. Detailed analysis of the effect of the pore structure, framework charge and functional group on separation is provided. In addition, future studies that should be focused in this field are proposed based on the existed works combined with the research results in our group. Contents 1 Introduction
2 Metal-organic frameworks for waste water treatment
2.1 Removal of organics
2.2 Removal of inorganics
3 Conclusions and outlook

CLC Number: 

[1] Zümriye A. Process Biochem., 2005, 40: 997-1026
[2] 崔英杰(Cui Y J), 杨世迎(Yang S Y), 王萍(Wang P), 贾永刚(Jia Y G). 化学进展(Progress in Chemistry), 2008, 20(7/8): 1196-1201
[3] 苑宝玲(Yuan B L), 王洪杰(Wang H J). 水处理新技术原理与应用(Principle and Application of New Water Treatment Technology).北京:化学工业出版社(Beijing:Chemical Industry Press), 2006. 43-44
[4] Pophali G R, Hedau S, Gedam N, Rao N N, Nandy T. J. Hazard. Mater., 2011, 189: 273-277
[5] Huebra M, Elizalde M P, Almela A. Hydrometallurgy, 2003, 68: 33-42
[6] Crini G. Bioresour. Technol., 2006, 97: 1061-1085
[7] Sharma P, Kaur H, Sharma M, Sahore V. Environ. Monit. Assess, 2011, 183: 151-195
[8] Lataye D H, Mishra I M, Mall I D. Ind. Eng. Chem. Res., 2006, 45: 3934-3943
[9] Zhang S, Shao T, Kose H S, Karanfìl T. Environ. Sci. Technol., 2010, 44: 6377-6383
[10] 阳庆元(Yang Q Y), 刘大欢(Liu D H), 仲崇立(Zhong C L). 化工学报(Journal of Chemical Industry and Engineering),2009, 60: 805-819
[11] Liu D H, Zhong C L. J. Mater. Chem., 2010, 20: 10308-10318
[12] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi O M. Science, 2002, 295: 469-472
[13] Gándara F, Gomez-Lor B, Gutiérrez-Puebla E, Iglesias M, Monge M A, Proserpio D M, Snejko N. Chem. Mater., 2008, 20: 72-76
[14] Bai J F, Leiner E, Scheer M. Angew. Chem. Int. Ed., 2002, 41: 783-786
[15] Yaghi O M, Li H L, Davic C, Richardson D,Groy T L. Acc. Chem. Res., 1998, 31: 474-484
[16] Cychosz K A, Ahmad R, Matzger A J. Chem. Sci., 2010, 1: 293-302
[17] Young L, Rivera M. Water Res., 1985, 19: 1325-1332
[18] Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. Water Res., 2009, 43: 363-380
[19] Rubio J, Souza M L, Smith R W. Miner. Eng., 2002, 15: 139-155
[20] Robinson T, McMullan G, Marchant R, Nigam P. Bioresour. Technol., 2001, 77: 247-255
[21] Mittal A, Malviya A, Kaur D, Mittal J, Kurup L. J. Hazard. Mater., 2007, 148: 229-240
[22] Chen S, Zhang J, Zhang C, Yue Q, Li Y, Li C. Desalination, 2010, 252: 149-156
[23] Low J J, Benin A I, Jakubczak P, Abrahamian J F, Faheem S A, Willis R R. J. Am. Chem. Soc., 2009, 131: 15834-15842
[24] Cychosz K A, Matzger A J. Langmuir, 2010, 26: 17198-17202
[25] Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, Férey G. Angew. Chem. Int. Ed., 2006, 45: 5974 -5978
[26] Horcajada P, Serre C, Maurin G, Ramsahye N A, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G. J. Am. Chem. Soc., 2008, 130: 6774-6780
[27] Kathryn M L, Pashow T, Rocca J D, Xie Z G, Tran S, Lin W B. J. Am. Chem. Soc., 2009, 131: 14261-14263
[28] Huxford R C, Rocca J D, Lin W B. Curr. Opin. Chem. Biol., 2010, 14: 262-268
[29] Sun C Y, Qin C, Wang C G, Su Z M, Wang S, Wang X L, Yang G S, Shao K Z, Lan Y Q, Wang E B. Adv. Mater., 2011, 23: 5629-5632
[30] Haque E, Lee J E, Jang I T, Hwang Y K, Chang J S, Jegal J, Jhung S H. J. Hazard. Mater., 2010, 181: 535-542
[31] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Mirgiolaki I. Science, 2005, 309: 2040-2042
[32] Haque E, Jun J W, Jhung S H. J. Hazard. Mater., 2011, 185: 507-511
[33] Yoon J H, Choi S B, Oh Y J, Seo M J, Jhon Y H, Lee T B, Kim D, Choi S H, Kim J. Catal. Today, 2007, 120: 324-329
[34] Sudik A C, C té A P, Yaghi O M. Inorg. Chem., 2005, 44: 2998-3000
[35] Rocher V, Siaugue J M, Cabuil V, Bee A. Water Res., 2008, 42: 1290-1298
[36] Pu F, Liu X, Xu B L, Ren J S, Qu X G. Chem. Eur. J., 2012, 18: 4322-4328
[37] Mahata P, Madras G, Natarajan S. J. Phys. Chem. B, 2006, 110: 13759-13768
[38] Du J J, Yuan Y P, Sun J X, Peng F M, Jiang X, Qiu L G. J. Hazard. Mater., 2011, 190: 945-951
[39] El-sharkawy R G, El-din A S B, Etaiw S H E. Spectrochimica Acta Part A, 2011, 79: 1969-1975
[40] Julien C S R, Tom R, Vincent V H, Perre S, Duerinck T, Maes M, DeVos D, Gobechiya E, Christine E A K, Gino V B, Joeri F M, Denayer J. Chem. Sus. Chem., 2011, 4: 1074-1077
[41] Kaye S S, Dailly A P, Yaghi O M, Long J R. J. Am. Chem. Soc., 2007, 129: 14176-14177
[42] Park K S, Cote P, Choi J Y, Huang R J. Proc. Natl. Acad. Sci. USA, 2006, 103: 10186-10191
[43] Kusgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S, Kaskel S. Microporous Mesoporous Mater., 2009, 120: 325-330
[44] Moggach S, Benett T. Angew. Chem., 2009, 121: 7221-7223
[45] Chen B L, Ji Y Y, Xue M, Frank R, Fronczek J. Inorg. Chem., 2008, 47: 5543-5545
[46] Maes M, Schouteden S, Alaerts L, Depla D, De Vos D E. Phys. Chem. Chem. Phys., 2011, 13: 5587-5589
[47] Serre C, Bourrelly S, Vimont A, Ramsahye N, Maurin G, Llewellyn P, Daturi M, Filinchuck Y, Leynaud O, Barnes P, Férey G. Adv. Mater., 2007, 19: 2246-2251
[48] Jhung S H, Lee J H, Yoon J W, Serre C, Férey G, Chang J S. Adv. Mater., 2007, 19: 121-124
[49] Pan L, Parker B, Huang X, Olson D H, Lee J, Li J. J. Am. Chem. Soc., 2006, 128: 4180-4181
[50] Trens P, Tanchoux N, Papineschi P M, Maldonado D, Renzo F, Fajula F. Microporous Mesoporous Mater., 2005, 86: 354-363
[51] Li G, Zhu C F, Xi X B, Cui Y. Chem. Commun., 2009, 2118-2120
[52] Dinesh V P, Somayajulu R P B, Dangi G P, Tayade R J, Somani R S, Bajaj H C. Ind. Eng. Chem. Res., 2011, 50: 10516-10524
[53] Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G. Chem. Eur. J., 2004, 10: 1373-1382
[54] Erdem E, Karapinar N, Donat R. J. Colloid Interface Sci., 2004, 280: 309-314
[55] Babel S, Kurniawan T A. J. Hazard. Mater., 2003, 97: 219-243
[56] Amor Z, Bariou B, Mameri N, Taky M, Nicolas S, Elmidaoui A. Desalination, 2001, 133: 215-223
[57] Osathaphan K, Tiyanont P, Yngard R A,Sharma V K. Water, Air, Soil Pollut., 2011, 219: 527-534
[58] Ke F, Qiu L G, Yuan Y P, Peng F M, Jiang X, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 196: 36-43
[59] He J, Yee K K, Xu Z T, Allen D H, Stephen S C, Che C M. Chem. Mater., 2011, 23: 2940-2947
[60] Nalaparaju A, Jiang J W. J. Phys. Chem. C, 2012, 116: 6925-6931
[61] Liu Q K, Ma J P, Dong Y B. Chem. Commun., 2011, 47: 7185-7187
[62] Hashemi L, Morsali A. CrystEngComm., 2011, 14: 779-781
[63] Cui P, Ren L J, Chen Z, Hu H C, Zhao B, Shi W, Cheng P. Inorg. Chem., 2012, 51: 2303-2310
[64] Custelcean R, Haverlock T J, Moyer B A. Inorg. Chem., 2006, 45: 6446-6452
[65] Custelcean R, Sellin V, Moyer B A. Chem. Commun., 2007, 1541-1543
[66] Wong K L, Law G L, Yang Y Y, Wong W T. Adv. Mater., 2006, 18: 1051-1054
[67] Chen B L, Wang L B, Zapata F, Qian G D, Lobkovsky E B. J. Am. Chem. Soc., 2008, 130: 6718-6719
[68] Gong Y, Qin J B, Wu T, Li J H, Yang L, Cao R. Dalton Trans., 2012, 41: 1961-1970
[69] Ma J P, Yu Y, Dong Y B. Chem. Commun., 2012, 48: 2946-2948
[70] Yang Q Y, Zhong C L. J. Phys. Chem. B, 2006, 110: 17776-17783
[71] Yang Q Y, Xue C Y, Zhong C L, Chen J F. AIChE J., 2007, 53: 2832-2840
[72] Liu B, Yang Q Y, Xue C Y, Zhong C L, Chen B H, Smit B. J. Phys. Chem. C, 2008, 112: 9854-9860
[73] Xu Q, Liu D H, Yang Q Y, Zhong C L, Mi J G. J. Mater. Chem., 2010, 20: 706-714
[74] Huang H L, Zhang W J, Liu D H, Liu B, Chen G J, Zhong C L. Chem. Eng. Sci., 2011, 66: 6297-6305
[75] Yot P G, Ma Q T, Haines J, Yang Q Y, Ghoufi A, Devic T, Serre C, Dmitriev V, Férey G, Zhong C L, Maurin G. Chem. Sci., 2012, 3: 1100-1104
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[3] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[6] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[7] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[8] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[9] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[10] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[11] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[12] Dechao Wang, Yangyang Xin, Xiaoqian Li, Dongdong Yao, Yaping Zheng. Porous liquids and Their Applications in Gas Capture and Separation [J]. Progress in Chemistry, 2021, 33(10): 1874-1886.
[13] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[14] Fengfeng Gao, Yanyan Yang, Xiao Du, Xiaogang Hao, Guoqing Guan, Bing Tang. Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM [J]. Progress in Chemistry, 2020, 32(9): 1344-1351.
[15] Bo Li, Lijian Ma, Ning Luo, Shoujian Li, Yunming Chen, Jinsong Zhang. Extraction and Separation of Uranium via Solid Phase Extraction [J]. Progress in Chemistry, 2020, 32(9): 1316-1333.