中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (10): 2011-2018 Previous Articles   Next Articles

• Review •

Application of Atomic Force Microscope to Polyolefin Research

Zhao Qiaoling, Ma Zhi*   

  1. Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received: Revised: Online: Published:
PDF ( 887 ) Cited
Export

EndNote

Ris

BibTeX

Polyolefin material is universally applied in industry, agriculture, medical, military, daily life and other fields because of its excellent performance and low price. In order to widen the application of polyolefin material, the surface functionalized polyolefin, polyolefin blends with other materials and polyolefin/ nano-inorganic composites were developed and became the focus of this research field. Atomic force microscopy (AFM) is a technology detecting the surface morphology, physical and chemical information of materials through the interaction between an extremely sharp tip and material surface. AFM plays an important role in the above-mentioned research of polyolefin materials. The surface roughness is one of the most important parameters in the surface functionalization of polyolefin material. While, AFM technology is able to provide accurate information about the surface roughness of such functionalized polyolefin material. Because of AFM technology can directly observe the state of component mixing and phase separation, it becomes an important tool to investigate the polyolefin blends with other materials. In addition, AFM is an efficient method to characterize the morphology of micro- and nano-structural material. Thus, AFM finds its application in the crystallization of polyolefin materials. In this paper, the operating principle and modes of AFM are briefly introduced. The applications of AFM in the research of surface roughness, blend phase separation and crystal of polyolefin materials are mainly reviewed. Contents 1 Introduction
2 AFM technology
3 Application of AFM in polyolefin materials
3.1 Polyolefin surface
3.2 Polyolefin blend phase separation
3.3 Polyolefin crystal
4 Conclusion and Outlook

CLC Number: 

[1] 彭昌盛(Peng C S), 宋少先(Song S X), 谷庆宝(Gu Q B). 扫描探针显微技术理论与应用(Scanning Probe Microscopy Principles and Applications). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2007. 11-17
[2] 杨英歌(Yang Y G), 周海(Zhou H), 卢一民(Lu Y M). 显微与测量(Microtechnique & Measurement), 2008, 5(5): 68-71
[3] Johnson M B, Wilkes G L, Sukhadia A M, Rohlfing D C. J. Appl. Polym. Sci., 2000, 77: 2845-2864
[4] Wang H, Yin Y, Yang S, Li C. J. Appl. Polym. Sci., 2009, 112: 3728-3735
[5] Zanini S, Orlandi M, Colombo C, Grimoldi E, Riccardi C. Eur. Phys. J. D, 2009, 54: 159-164
[6] Silva R, Muniz E C, Rubira A F. Polymer, 2008, 49: 4066-4075
[7] Wang H, Han J. J. Colloid Interface Sci., 2009, 333: 171-179
[8] Ataeefard M, Moradian S, Mirabedini M, Ebrahimi M, Asiaban S. Prog. Org. Coat., 2009, 64: 482-488
[9] Pandiyaraj K N, Selvarajan V, Deshmukh R R, Gao C. Appl. Surf. Sci., 2009, 255: 3965-3971
[10] Gomathi N, Neogi S. Appl. Surf. Sci., 2009, 255: 7590-7600
[11] Grimoldi E, Zanini S, Siliprandi R A, Riccardi C. Eur. Phys. J. D, 2009, 54: 165-172
[12] Pandey J K, Kim M H, Chun D M, Lee C S, Ahn S H. Surf. Rev. Lett., 2009, 16: 259-263
[13] La Storia A, Ercolini D, Marinello F, Mauriello G. J. Food Sci., 2008, 73: 48-54
[14] Jiang J H, Zhu L P, Li X L, Xu Y Y, Zhu B K. J. Membr. Sci., 2010, 364: 194-202
[15] Chaloupka A, imek P, utta P, vor Dcˇ ík V. Mater. Lett., 2010, 64: 1316-1318
[16] Lin W, Sun W, Yang J, Shen Z. J. Phys. Chem. C, 2008, 112: 18217-18223
[17] Barish J A, Goddard J M. J. Appl. Polym. Sci., 2011, 120: 2863-2871
[18] Lin Y, Yakovleva V, Chen H, Hiltner A, Baer E. J. Appl. Polym. Sci., 2009, 113: 1945-1952
[19] Golebiewski J, Rozanski A, Dzwonkowski J, Galeski A. Eur. Polym. J., 2008, 44: 270-286
[20] Smith P F, Chun I, Liu G, Dimitrievich D, Rasburn J, Vancso G J. Polym. Eng. Sci., 1996, 36: 2129-2134
[21] Wang L, Huang T, Kamal M R, Rey A D, Teh J. Polym. Eng. Sci., 2000, 40: 747-760
[22] Wang L, Kamal M R, Rey A D. Polym. Eng. Sci., 2001, 41: 358-372
[23] Chang A C, Tau L, Hiltner A, Baer E. Polymer, 2002, 43: 4923-4933
[24] Resch K, Wallner G M, Teichert C, Gahleitner M. Polym. Eng. Sci., 2007, 47: 1021-1032
[25] Baghaei B, Jafari S H, Khonakdar H A, Rezaeian I, As’habi L, Ahmadian S. Polym. Bull., 2009, 62: 255-270
[26] Panaitescu D, Ciuprina F, Iorga M, Frone A, Radovici C, Ghiurea M, Sever S, Plesa I. J. Appl. Polym. Sci., 2011, 122: 1921-1935
[27] Prokhoro V V, Nitta K J. Polym. Sci. Part B: Polym. Phys., 2010, 48: 766-777
[28] Zhang F, Baralia G G, Nysten B, Jonas A M. Macromolecules, 2011, 44: 7752-7757
[29] Galeski A, Bartczak Z, Kazmierczak T, Slouf M. Polymer, 2010, 51: 5780-5787
[30] Zhao J, Qiu J, Niu Y, Wang Z. J. Polym. Sci., Part B: Polym. Phys., 2009, 47: 1703-1712
[31] Cao Y, van Horn R M, Tsai C C, Graham M J, Jeong K U, Wang B, Auriemma F, de Rosa C, Lotz B, Cheng S Z D. Macromolecules, 2009, 42: 4758-4768
[32] Olmos D, Domínguez C, Castrillo P D, Gonzalez-Benito J. Polymer, 2009, 50: 1732-1742
[33] Jiang S, Kong B, Han W, Thüne P C, Yang X, Loos J. Polymer, 2009, 50: 3810-3818
[34] Ayoub G, Zari F, Fréderix C, Gloaguen J M, Nat-Abdelaziz M, Seguela R, Lefebvre J M. Int. J. Plast., 2011, 27: 492-511
[35] Bensason S, Minick J, Moet A, Chum S, Hiltner A, Baer E. J. Polym. Sci. Part B: Polym. Phys., 1996, 34: 1301-1315
[1] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[2] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[3] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[4] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[5] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[6] Yizhou Yang, Bingquan Peng, Xiaoling Lei, Haiping Fang. Aromatic Rings in Ion Soultions: Two-Dimensional Crystals of Unconventional Stoichiometries and Ferromagnetism [J]. Progress in Chemistry, 2022, 34(7): 1524-1536.
[7] Zhenxing Li, Zhiwang Luo, Ping Wang, Zhenqiang Yu, Erqiang Chen, Helou Xie. Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications [J]. Progress in Chemistry, 2022, 34(4): 787-800.
[8] Meng Wang, He Song, Yifei Zhu. Stimuli-Responsive Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(12): 2588-2603.
[9] Meng Wang, Jianfeng Yang. Liquid Crystal Elastomers Based Soft Robots [J]. Progress in Chemistry, 2022, 34(1): 168-177.
[10] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[11] Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv, Runfeng Chen. The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals [J]. Progress in Chemistry, 2021, 33(8): 1362-1377.
[12] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[13] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[14] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[15] Mingxin Zheng, Min Zeng, Xi Chen, Jinying Yuan. Structures and Applications of Photo-Responsive Shape-Changing Liquid Crystal Polymers [J]. Progress in Chemistry, 2021, 33(6): 914-925.