中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (10): 1936-1945 Previous Articles   Next Articles

• Review •

Organizing Functional Nanomaterials with DNA Origami

Wang Jinye1, Song Chen2, Xu Jingkun1*, Ding Baoquan2*   

  1. 1. Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China;
    2. National Center for Nanoscience and Technology, Beijing 100190, China
  • Received: Revised: Online: Published:
PDF ( 1039 ) Cited
Export

EndNote

Ris

BibTeX

DNA origami,an efficient self-assembly technique, has shown great potential for applications in biomedicine, biosensing, nanooptoelectronic device and nanophotonics. It has received strong attention from researchers in a wide range of fields. The programmability and three dimensional addressability of DNA origami architectures have been utilized to precisely organize various functional groups, such as metallic nanoparticles, semiconducting nanoparticles,protein molecules and single-wall carbon nanotubes. Meanwhile, DNA origami structures have also been employed to investigate single molecule reactions on them, such as label-free RNA hybridization, formation and break of a chemical bond and distance-dependent multivalent ligand-protein binding. In the present paper, the research progress of organizing functional nanomaterials with DNA origami are reviewed, and the challenges and application prospects are discussed. Contents 1 Introduction
2 Functional groups organized by DNA origami
2.1 Metallic nanoparticles and semiconducting quantum dots self-assembled on DNA origami
2.2 Protein molecules self-assembled on DNA origami
2.3 Single-wall carbon nanotubes self-assembled on DNA origami
3 DNA origami combining with lithography technology
4 DNA origami for single-molecule reaction detection
5 Conclusion and outlook

CLC Number: 

[1] Seeman N C. J. Theor. Biol., 1982, 99: 237-247
[2] Seeman N C. Nature, 2003, 421: 427-431
[3] Sha R J, Zhang X P, Liao S P, Constantinou P E, Ding B Q, Wang T, Garibotti A V, Zhong H, Israel L B, Wang X, Wu G, Chakraborty B, Chen J H, Zhang Y W, Yan H, Shen Z Y, Shen W Q, Sa-Ardyen P, Kopatsch J, Zheng J W, Lukeman P S, Sherman W B, Mao C D, Jonosk N, Seeman N C. Lect. Notes Comput. Sci., 2005, 3699: 20-31
[4] Seeman N C. Mol. Biotechnol., 2007, 37: 246-257
[5] Yang X P, Vologodskii A V, Liu B, Kemper B, Seeman N C. Biopolymers, 1998, 45: 69-83
[6] Mao C D, Sun W Q, Shen Z Y, Seeman N C. Nature, 1999, 397: 144-146
[7] Yurke B, Turberfield A J, Mills A P, Simmel F C, Neumann J L. Nature, 2000, 406: 605-608
[8] Dittmer W U, Simmel F C. Nano Lett., 2004, 4: 689-691
[9] Liao S P, Seeman N C. Science, 2004, 306: 2072-2074
[10] Sherman W B, Seeman N C. Nano. Lett., 2004, 4: 1801-1801
[11] Shin J S, Pierce N A. J. Am. Chem. Soc., 2004, 126: 10834-10835
[12] Seeman N C. Trends Biochem. Sci., 2005, 30: 119-125
[13] Tian Y, He Y, Chen Y, Yin P, Mao C D. Angew. Chem. Int. Ed., 2005, 44: 4355-4358
[14] Rothemund P W K. Nature, 2006, 440: 297-302
[15] Andersen E S, Dong M D, Nielsen M M, Jahn K, Lind-Thomsen A, Mamdouh W, Gothelf K V, Besenbacher F, Kjems J. ACS Nano, 2008, 2: 1213-1218
[16] Qian L L, Wang Y, Zhang Z, Zhao J, Pan D, Zhang Y, Liu Q, Fan C H, Hu J, He L. Chinese Sci. Bull., 2006, 51: 2973-2976
[17] Ke Y G, Sharma J, Liu M H, Jahn K, Liu Y, Yan H. Nano Lett., 2009, 9: 2445-2447
[18] Kuzuya A, Komiyama M. Chem. Commun., 2009, 4182-4184
[19] Han D R, Pal S, Nangreave J, Deng Z T, Liu Y, Yan H. Science, 2011, 332: 342-346
[20] Andersen E S, Dong M, Nielsen M M, Jahn K, Subramani R, Mamdouh W, Golas M M, Sander B, Stark H, Oliveira C L P, Pedersen J S, Birkedal V, Besenbacher F, Gothelf K V, Kjems J. Nature, 2009, 459: 73-75
[21] Ke Y G, Douglas S M, Liu M H, Sharma J, Cheng A C, Leung A, Liu Y, Shih W M, Yan H. J. Am. Chem. Soc., 2009, 131: 15903-15908
[22] Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M. Nature, 2009, 459: 1154-1154
[23] Acuna G P, Bucher M, Stein I H, Steinhauer C, Kuzyk A, Holzmeister P, Schreiber R, Moroz A, Stefani F D, Lied T, Simmel F C, Tinnefeld P. ACS Nano, 2012, 6: 3189-3195
[24] Ding B Q, Deng Z T, Yan H, Cabrini S, Zuckermann R N, Bokor J. J. Am. Chem. Soc., 2010, 132: 3248-3249
[25] Michaels A M, Jiang J, Brus L. J. Phys. Chem. B, 2000, 104: 11965-11971
[26] Bosnick K A, Jiang J, Brus L E, J. Phys. Chem. B, 2002, 106: 8096-8099
[27] Doering W E, Nie S M. J. Phys. Chem. B, 2002, 106: 311-317
[28] Jiang J, Bosnick K, Maillard M, Brus L. J. Phys. Chem. B, 2003, 107: 9964-9972
[29] Andersen P C, Jacobson M L, Rowlen K L. J. Phys. Chem. B, 2004, 108: 2148-2153
[30] Hao E, Schatz G C. J. Chem. Phys., 2004, 120: 357-366
[31] Xu H, Wang X H, Persson M P, Xu H Q, Kall M, Johansson P. Phys. Rev. Lett., 2004, 93: art. no. 243002
[32] Shegai T O, Haran G. J. Phys. Chem. B, 2006, 110: 2459-2461
[33] Dieringer J A, Lettan R B, Scheidt K A, Van Duyne R P. J. Am. Chem. Soc., 2007, 129: 16249-16256
[34] Sawai Y, Takimoto B, Nabika H, Ajito K, Murakoshi K. J. Am. Chem. Soc., 2007, 129: 1658-1662
[35] Lim D K, Jeon K S, Hwang J H, Kim H, Kwon S, Suh Y D, Nam J M. Nat. Nanotechnol., 2011, 6: 452-460
[36] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q. Nature, 2010, 464: 392-395
[37] Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D. Nat. Mater., 2010, 9: 60-67
[38] Atwater H A, Polman A. Nat. Mater., 2010, 9: 865-865
[39] Medley C D, Smith J E, Tang Z, Wu Y, Bamrungsap S, Tan W H. Anal. Chem., 2008, 80: 1067-1072
[40] Sonnichsen C, Reinhard B M, Liphardt J, Alivisatos A P. Nat. Biotechnol., 2005, 23: 741-745
[41] Bingham J M, Willets K A, Shah N C, Andrews D Q, Van Duyne R P. J. Phys. Chem. C, 2009, 113: 16839-16842
[42] Cao Y W C, Jin R C, Mirkin C A. Science, 2002, 297: 1536-1540
[43] Li K R, Stockman M I, Bergman D J. Phys. Rev. Lett., 2003, 91: art. no. 227402
[44] Alivisatos A P, Johnsson K P, Peng X G, Wilson T E, Loweth C J, Bruche M P, Schultz P G. Nature, 1996, 382: 609-611
[45] Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. Nature, 1996, 382: 607-609
[46] Le J D, Pinto Y, Seeman N C, Musier-Forsyth K, Taton T A, Kiehl R A. Nano Lett., 2004, 4: 2343-2347
[47] Zheng J W, Constantinou P E, Micheel C, Alivisatos A P, Kiehl R A, Seeman N C. Nano Lett., 2006, 6: 1502-1504
[48] Sharma J, Chhabra R, Andersen C S, Gothelf K V, Yan H, Liu Y. J. Am. Chem. Soc., 2008, 130: 7820-7821
[49] Bidault S, Abajo F J G, Polman A. J. Am. Chem. Soc., 2008, 130: 2750-2751
[50] Pal S, Deng Z T, Ding B Q, Yan H, Liu Y. Angew. Chem. Int. Ed., 2010, 49: 2700-2704
[51] Decker M, Klein M W, Wegener M, Linden S. Opt. Lett., 2007, 32: 856-858
[52] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Science, 2009, 325: 1513-1515
[53] Plum E, Zhou J, Dong J, Fedotov V A, Koschny T, Soukoulis C M, Zheludev N I. Phys. Rev. B, 2009, 79: art. no. 035407
[54] Zhang S, Park Y S, Li J S, Lu X C, Zhang W L, Zhang X. Phys. Rev. Lett., 2009, 102(2): art. no. 023901
[55] Fofang N T, Park T H, Neumann O, Mirin N A, Nordlander P, Halas N J. Nano Lett., 2008, 8: 3481-3487
[56] Fan Z Y, Govorov A O. Nano Lett., 2010, 10: 2580-2587
[57] Fan Z Y, Govorov A O. J. Phys. Chem. C, 2011, 115: 13254-13261
[58] Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H. Science, 2009, 323: 112-116
[59] Mastroianni A J, Claridge S A, Alivisatos A P. J. Am. Chem. Soc., 2009, 131: 8455-8459
[60] Chen C L, Zhang P J, Rosi N L. J. Am. Chem. Soc., 2008, 130: 13555-13557
[61] Shen X B, Song C, Wang J Y, Shi D W, Wang Z G, Liu N, Ding B Q. J. Am. Chem. Soc., 2012, 134: 146-149
[62] Kuzyk A, Schreiber R, Fan Z Y, Pardatscher G, Roller E M, Alexander H, Simmel F C, Govorov A O, Liedl T. Nature, 2012, 483: 311-314
[63] Jun Y W, Sheikholeslami S, Hostetter D R, Tajon C, Craik C S, Alivisatos A P. P. Natl. Acad. Sci. USA, 2009, 106: 17735-17740
[64] Liu N, Hentschel M, Weiss T, Alivisatos A P, Giessen H. Science, 2011, 332: 1407-1410
[65] Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A, Nuzzo R G. Chem. Rev., 2008, 108: 494-521
[66] Zhao Y, Thorkelsson K, Mastroianni A J, Schilling T, Luther J M, Rancatore B J, Matsunaga K, Jinnai H, Wu Y, Poulsen D, Fréchet J M J, Alivisatos A P, Xu T. Nat. Mater., 2009, 8: 979-985
[67] Sharma J, Ke Y, Lin C, Chhabra R, Wang Q, Nangreave J, Liu Y, Yan H. Angew. Chem. Int. Ed., 2008, 47: 5157-5159
[68] Fu A, Micheel C M, Cha J, Chang H, Yang H, Alivisatos A P. J. Am. Chem. Soc., 2004, 126: 10832-10833
[69] Bui H, Onodera C, Kidwell C, Tan Y P, Graugnard E, Kuang W, Lee J, Knowlton W B, Yurke B, Hughes W L. Nano Lett., 2010, 10: 3367-3372
[70] Nykypanchuk D, Maye M M, van der Lelie D, Gang O. Nature, 2008, 451: 549-552
[71] Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. Nature, 1996, 382: 607-609
[72] Park S Y, Lytton-Jean A K R, Lee B, Weigand S, Schatz G C, Mirkin C A. Nature, 2008, 451: 553-556
[73] He Y, Tian Y, Ribbe A E, Mao C D. J. Am. Chem. Soc., 2006, 128: 12664-12665
[74] Williams B A R, Lund K, Liu Y, Yan H, Chaput J C. Angew. Chem. Int. Ed., 2007, 46: 3051-3054
[75] Rinker S, Ke Y G, Liu Y, Chhabra R, Yan H. Nat. Nanotechnol., 2008, 3: 418-422
[76] Chhabra R, Sharma J, Ke Y G, Liu Y, Rinker S, Lindsay S, Yan H. J. Am. Chem. Soc., 2007, 129: 10304-10306
[77] Wilner O I, Weizmann Y, Gill R, Lioubashevski O, Freeman R, Willner I. Nat. Nanotechnol., 2009, 4: 249-254
[78] Yan H, Park S H, Finkelstein G, Reif J H, LaBean T H. Science, 2003, 301: 1882-1884
[79] Li H Y, Park S H, Reif J H, LaBean T H, Yan H. J. Am. Chem. Soc., 2004, 126: 418-419
[80] Lund K, Liu Y, Lindsay S, Yan H. J. Am. Chem. Soc., 2005, 127: 17606-17607
[81] Kuzuya A, Kimura M, Numajiri K, Koshi N, Ohnishi T, Okada F, Komiyama M. ChemBioChem, 2009, 10: 1811-1815
[82] Numajiri K, Yamazaki T, Kimura M, Kuzuya A, Komiyama M. J. Am. Chem. Soc., 2010, 132: 9937-9939
[83] Voigt N V, Torring T, Rotaru A, Jacobsen M F, Ravnsbaek J B, Subramani R, Mamdouh W, Kjems J, Mokhir A, Besenbacher F, Gothelf K V. Nat. Nanotechnol., 2010, 5: 200-203
[84] Kuzyk A, Laitinen K T, Torma P. Nanotechnology, 2009, 20: art. no. 235305
[85] Fu J L, Liu M H, Liu Y, Woodbury N W, Yan H. J. Am. Chem. Soc., 2012, 134: 5516-5519
[86] Maune H T, Han S P, Barish R D, Bockrath M, Goddard W A, Rothemund P W K, Winfree E. Nat. Nanotechnol., 2010, 5: 61-66
[87] Kershner R J, Bozano L D, Micheel C M, Hung A M, Fornof A R, Cha J N, Rettner C T, Bersani M, Frommer J, Rothemund P W K, Wallraff G M. Nat. Nanotechnol., 2009, 4: 557-561
[88] Hung A M, Micheel C M, Bozano L D, Osterbur L W, Wallraff G M, Cha J N. Nat. Nanotechnol., 2010, 5: 121-126
[89] Ding B Q, Wu H, Xu W, Zhao Z A, Liu Y, Yu H B, Yan H. Nano Lett., 2010, 10: 5065-5069
[90] Bustamante C. Q. Rev. Biophys., 2005, 38: 291-301
[91] Bustamante C. Annu. Rev. Biochem., 2008, 77: 45-50
[92] Rajendran A, Endo M, Sugiyama H. Angew. Chem. Int. Ed., 2012, 51: 874-890
[93] Gietl A, Holzmeister P, Grohmann D, Tinnefeld P. Nucleic Acids Research, 2012, 40: art. no. e110
[94] Ke Y G, Lindsay S, Chang Y, Liu Y, Yan H. Science, 2008, 319: 180-183
[95] Nangreave J, Yan H, Liu Y. Biophys. J., 2009, 97: 563-571
[96] Wei R, Martin T G, Rant U, Dietz H. Angew. Chem. Int. Ed., 2012, 51: 1-5
[97] Bell N A W, Engst C R, Ablay M, Divitini G, Ducati C, Liedl T, Keyser U F. Nano Lett., 2012, 12: 512-517
[98] Pound E, Ashton J R, Becerril H A, Woolley A T. Nano Lett., 2009, 9: 4302-4305
[99] Zhao Z, Yan H, Liu Y. Angew. Chem. Int. Ed., 2010, 49: 1414-1417
[100] Douglas S M, Bachelet I, Church G M. Science, 2012, 335: 831-834
[101] Pendry J B. Science, 2004, 306: 1353-1355
[1] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[2] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[3] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[4] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[5] Yanyan Wang, Limin Chen, Siyang Li, Luhua Lai. How Intrinsically Disordered Proteins Modulate Biomolecular Condensates [J]. Progress in Chemistry, 2022, 34(7): 1610-1618.
[6] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[7] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[8] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[9] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[10] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[11] Xingchen Wu, Wenhui Liang, Chenxin Cai. Photoluminescence Mechanisms of Carbon Quantum Dots [J]. Progress in Chemistry, 2021, 33(7): 1059-1073.
[12] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[13] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[14] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.
[15] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.