中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (9): 1973-1984 Previous Articles   Next Articles

• Review •

Monodisperse Mesoporous Silica Nanoparticles: Synthesis and Application in Biomaterials

Tang Shiyang1, Sun Xiaojun1, Lin Li2, Sun Yan2*, Liu Xianbin1*   

  1. 1. Key Laboratory of Green Chemical Technology of Heilongjiang Province, The School of Chemistry and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040,China;
    2. Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received: Revised: Online: Published:
PDF ( 2007 ) Cited
Export

EndNote

Ris

BibTeX

Monodisperse mesoporous silica nanoparticles are of promising applications in many current and emerging areas of technology because of their nature advantages. This review is devoted to the progress made in the last decade in synthesis and biomedical application of monodisperse mesoporous silica nanoparticles. We present a comprehensive overview of synthetic strategies for monodisperse mesoporous silica nanoparticles. These strategies are broadly categorized into three groups, such as dilute solution method, microemulsion method, and introduction of template/different additives to reaction system. Monodisperse mesoporous silica nanoparticles with good dispersion, different morphology and tuning pore sizes are successfully synthesized by means of the above-mentioned methods. Applications of monodisperse mesoporous silica nanoparticles in drug and large biomolecule delivery and controlled release, separation of the large bimolecular, biomarker and biomedical diagnosis are mostly described.

Contents
1 Introduction
2 Preparation of monodisperse mesoporous silica nanoparticles
2.1 Dilute solution method
2.2 Microemulsion method
2.3 Introduction of template/different additives
3 Application of monodisperse mesoporous silica nanoparticles
3.1 Loading and controlled release of drugs and large bimolecular
3.2 Separation of large biomacromolecule
3.3 Biomarker and biomedical diagnosis
4 Conclusion and outlook

 

CLC Number: 

[1] Kresge C T, L eonowicz M E, Roth W J, Vartuli J C, Beck J S.Nature, 1992, 359: 710-712
[2] Beck J S, VartUli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenkert J L.J.Am.Chem.Soc., 1992, 114: 10834-10843
[3] 韩涤非(Han D F), 王安杰(Wang A J), 孔祥国(Kong X G).化学进展(Progress in Chemistry), 2002, 14(2): 98-106
[4] 古芳娜(Gu F N), 杨佳园(Yang J Y), 魏峰(Wei F), 朱建华(Zhu J H).催化学报(Chinese Journal of Catalysis), 2010, 31: 267-272
[5] 刘峰(Liu F), 金海涛(Jin H T), 任红波(Ren H B), 陈国友(Chen G Y), 孟利(Meng L).农产品加工 ·学刊(Academic Periodical of Farm Products Processing), 2008, 7: 212-218
[6] Rurack K, Martínez-Màñez R.The Supramolecular chemistry of Organic-Inorganic Hybrid Materials.John Wiley & Sons Inc., 2010
[7] Cademartiri L, Ozin G A.Concepts of Nanochemistry.Wiley-VCH, 2009
[8] Torney F, Trewyn B G, Lin V S Y, Wang K.Nat.Nanotechnol., 2007, 2: 295-300
[9] Tan W, Wang K, He X, Zhao X J, Drake T, Wang L, Bagwe R.Med.Res.Rev., 2004, 24: 621-638
[10] Barbe C, Bartlett J, Kong L, Finnie K, Lin H Q, Larkin M, Calleja S, Bush A, Calleja G.Adv.Mater., 2004, 16: 1959-1966
[11] Angelos S, Liong M, Choi E, Zink J I.Chem.Eng.J., 2008, 137: 4-13
[12] Cai Q, Luo Z S, Pang W Q, Fan Y W, Chen X H, Cui F Z.Chem.Mater., 2001, 13: 258-263
[13] Fowler C E, Khushalani D, Lebeau B, Mann S.Adv.Mater., 2001, 13(9): 649-652
[14] Nooney R I, Thirunavukkarasu D, Chen Y, Josephs R, Ostafin A E.Chem.Mater., 2002, 14: 4721-4728
[15] Rathousky J, Zukalova M, Kooyman P J, Zukal A.Colloids Surf.A, 2004, 241: 81-86
[16] Nalwa H S.Encyclopedia of Nanoscience and Nanotechnology American Scientific Publishers, 2004
[17] Wan Y, Zhao D Y.Chem.Rev., 2007, 107: 2821-2860
[18] Yamada Y, Yano K.Micropor.Mesopor.Mater., 2006, 93: 190-198
[19] Shimura N, Ogawa M.J.Mater.Sci., 2007, 42: 5299-5306
[20] Stöber W, Fink A, Bohn E.J.Colloid.Interf.Sci., 1968, 26: 62-69
[21] He Q, Cui X., Cui F, Guo L, Shi J.Micropor.Mesopor.Mater., 2009, 117: 609-616
[22] Lu F, Wu S H, Hung Y, Mou C Y.Small, 2009, 5(12): 1408-1413
[23] Shi Y T, Cheng H Y, Geng Y, Nan H M, Chen W, Cai Q, Chen B H, Sun X D, Yao Y W, Li H D.Mater.Chem.Phys., 2010, 120: 193-198
[24] Huang X, Teng X, Chen D, Tang F, He J.Biomaterials, 2010, 31: 438-448
[25] Lee Y G, Oh C, Yoo S Y, Koo S M, Oh S G.Micropor.Mesopor.Mater., 2005, 86: 134-144
[26] Miao J, Qian J, Wang X, Zhang Y, Yang H, He P.Mater.Lett., 2009, 63: 989-990
[27] Nandiyanto A B D, Kim S G, Iskandar F, Okuyama K.Micropor.Mesopor.Mater., 2009, 120: 447-453
[28] Zhang Y, Zhi Z, Jiang T, Zhang J, Wang Z, Wang S.J.Control.Release, 2010: 1-7
[29] Lebedev O I, Tendeloo G V, Collart O, Cool P, Vansant E F.Solid State Sci., 2004, 6: 489-498
[30] Suzuki K, Ikari K, Imai H.J.Am.Chem.Soc., 2004, 126: 462-463
[31] Trewyn B G, Whitman C M, Lin V S Y.Nano Lett., 2004, 4(11): 2139-2143
[32] Möller K, Kobler J, Bein T.Adv.Funct.Mater., 2007, 17: 605-612
[33] Venkatathri N.Solid State Commun., 2007, 143: 493-497
[34] Chen H, He J.Chem.Commun., 2008, 4422-4424
[35] Wang J G, Xiao Q, Zhou H J, Sun P C, Ding D T, Chen T H.J.Colloid Interf.Sci., 2008, 323: 332-337
[36] Mukherjee I, Mylonakis A, Guo Y, Samuel S P, Li S, Wei R Y, Kojtari A, Wei Y.Micropor.Mesopor.Mater., 2009, 122: 168-174
[37] Zhang J, Liu M, Zhang A, Lin K, Song C, Guo X.Solid State Sci., 2010, 12: 267-273
[38] Skylesh S, Schünemann V, Thiel W R.Angew.Chem.Int.Ed., 2010, 49: 3428-3459
[39] Trewyn B G, Giri S, Slowing I I, Lin V S Y.Chem.Commun., 2007, 3236-3245
[40] Tsai C P, Chen C Y, Hung Y, Chang F H, Mou C Y.J.Mater.Chem., 2009, 19: 5737-5743
[41] Vallet-Regi M, Rmila A, Real R P, Pe'rez-Pariente J.Chem.Mater., 2001, 13: 308-311
[42] Munoz B, Rmila A, Pérez-Pariente J, D D' az I, Vallet-Reg M.Chem.Mater., 2003, 15: 500-503
[43] Lu J, Liong M, Zink J I, Tamano F.Small, 2007, 3(8): 1341-1346
[44] Zhao Y, Trewyn B G, Slowing I I, Lin V S Y.J.Am.Chem.Soc., 2009, 13: 8398-8400
[45] Slowing I I, Vivero-Escoto J L, Wu C W, Lin V S Y.Adv.Drug Delivery Rev., 2008, 60: 1278-1288
[46] Climent E, Martinez-Manezez R, Sancenon F, Marcos M D, Soto J, Maquieira A, Amoros P.Angew.Chem., 2010, 122: 7439-7441
[47] Torney F, Trewyn B G, Lin V S Y, Wang K.Nat.Nanotechnol., 2007, 2: 295-300
[48] Gao F, Botella P, Corma A, Blesa J, Gong L.J.Phys.Chem.B, 2009, 113: 1796-1804
[49] Chen C, Pu F, Huang Z, Liu Z, Ren J, Qu X.Nucleic Acids Res., 2011, 39(4): 1638-1644
[50] Katiyar A, Pinto N G.Small, 2006, 2(5): 644-648
[51] Fan J, Lei J, Wang L, Yu C, Zhao D.Chem.Commun., 2003: 2140-2141
[52] Chen L, Zhu G, Zhang D, Zhang D, Zhao H, Guo M, Shi W, Qiu S.J.Mater.Chem., 2009, 19: 2013-2017
[53] Zhang M, Wu Y, Feng X, He X, Chen L, Zhang Y.J.Mater.Chem., 2010, 2: 5835-5842
[54] Radu D R, Lai C Y, Wiench J W, Pruski M.J.Am.Chem.Soc., 2004, 126: 1640-1641
[55] Slowing I, Trewyn B G, Lin V S Y.J.Am.Chem.Soc., 2006, 128: 14792-14793
[56] Qian H S, Guo H C, Ho P C L, Mahendran R, Zhang Y.Small, 2009, 5(20): 2285-2290
[57] Taylor K M L, Kim J S, Rieter W J, An H, Lin W, Lin W.J.Am.Chem.Soc., 2008, 130: 2154-2155
[58] Lee J E, Lee N, Kim H, Kim J, Choi S H, Kim J H, Kim T, Song I C, Park S P, Moon W K, Hyeon T.J.Am.Chem.Soc., 2010, 132: 552-557

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[7] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[8] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[9] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[10] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[11] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[12] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[13] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[14] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[15] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.