中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (9): 1915-1928 Previous Articles   Next Articles

• Review •

Application of Porphyrin Compounds in Organic Solar Cells

Tang Yayun1, Mei Qunbo1*, Xu Zhijie1, Ling Qidan1,2*   

  1. 1. Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China;
    2. College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
  • Received: Revised: Online: Published:
PDF ( 1830 ) Cited
Export

EndNote

Ris

BibTeX

Porphyrin compounds are featured with their planar and conjugated structures. They exhibit good electronic, optical and magnetic properties. Especially, they exhibit excellent light-harvesting character in the visible and near infrared region. In recent years, porphyrin compounds have been extensively studied in the field of organic solar cell, especially in dye-sensitized solar cells for their excellent properties. Modifying the porphyrin molecule to improve the efficiency of the corresponding solar cells, such as the increasing degree of molecular conjugation in the molecule, the introduction of long alkyl chains, the introduction of functional small molecules such as triethylamine and thiophene and so on, and excellent results has been achieved. In addition, the porphyrin compounds in the bulk heterojunction solar cells application is also more extensive. This paper reviews the application of various porphyrin compounds in organic solar cells for the past few years. It mainly focuses on the relationship of porphyrin structures and the performance of solar cells.

Contents
1 Introduction
2 Basic principles of organic solar cells
2.1 Introduction of organic solar cells
2.2 Evaluation parameters of solar cells
3 Application of porphyrin compounds in organic solar cells
3.1 Porphyrin dye-sensitized solar cells
3.2 Porphyrin bulk heterojunction solar cells
3.3 Porphyrin dye-sensitized bulk heterojunction solar cells
4 Outlook

CLC Number: 

[1] Armaroli N, Balzani V.Angew.Chem.Int.Ed., 2007, 46: 52-66
[2] Zhan X, Zhu D.Polym.Chem., 2010, 1: 409-419
[3] Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G, Ray C, Yu L.Adv.Mater., 2010, 22: 1-4
[4] Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L.Jpn.J.Appl.Phys.Lett., 2006, 45: 638-640
[5] Grätzel M.Inorg.Chem., 2005, 44: 6841-6851
[6] Tachibana Y, Haque S, Mercer I, Durrant J, Klug D.J.Phys.Chem.B, 2000, 104: 1198-1205
[7] Tachibana Y, Rubtsov I, Montanari I, Yoshihara K, Klug D, Durrant J.J.Photochem.Photobiol.A: Chemistry, 2001, 142: 215-220
[8] Gervaldo M, Fungo F, Durantini E, Silber J, Sereno L, Otero L.J.Phys.Chem.B, 2005, 109: 20953-20962
[9] Imahori H, Umeyama T.J.Phys.Chem.C, 2009, 113: 9029-9039
[10] Wang X F, Tamiaki H.Energy Environ.Sci., 2010, 3: 94-106
[11] Ooyama Y, Harima Y.Eur.J.Org.Chem., 2009, 2009: 2903-2934
[12] Wang Q, Campbell W, Bonfantani E, Jolley K, Officer D, Walsh P, Gordon K, Humphry-Baker R, Nazeeruddin M, Grätzel M.J.Phys.Chem.B, 2005, 109: 15397-15409
[13] Campbell W, Jolley K, Wagner P, Wagner K, Walsh P, Gordon K, Schmidt-Mende L, Nazeeruddin M, Wang Q, Grätzel M, Officer D.J.Phys.Chem.C, 2007, 111(32): 11760-11762
[14] Lind S, Gordon K, Gambhir S, Officer D.Phys.Chem.Chem.Phys., 2009, 11: 5598-5607
[15] Tanaka M, Hayashi S, Eu S, Umeyama T, Matano Y, Imahori H.Chem.Commun., 2007, 2007: 2069-2071
[16] Hayashi S, Tanaka M, Hayashi H, Eu S, Umeyama T, Matano Y, Araki Y, Imahori H.J.Phys.Chem.C, 2008, 112: 15576-15585
[17] Eu S, Hayashi S, Umeyama T, Matano Y, Araki Y, Imahori H.J.Phys.Chem.C, 2008, 112(11): 4396-4405
[18] Kira A, Matsubara Y, Iijima H, Umeyama T, Matano Y, Ito S, Niemi M, Tkachenko N, Lemmetyinen H, Imahori H.J.Phys.Chem.C, 2010, 114: 11293-11304
[19] Imahori H, Hayashi S, Hayashi H, Oguro A, Eu S, Umeyama T, Matano Y.J.Phys.Chem.C, 2009, 113: 18406-18413
[20] Imahori H, Matsubara Y, Iijima H, Umeyama T, Matano Y, Ito S, Niemi M, Tkachenko N, Lemmetyinen H.J.Phys.Chem.C, 2010, 114: 10656-10665
[21] Liu Y, Xiang N, Feng X, Shen P, Zhou W, Weng C, Zhao B, Tan S.Chem.Commun., 2009, 18: 2499-2501
[22] Eu S, Hayashi S, Umeyama T, Oguro A, Kawasaki M, Kadota N, Matano Y, Imahori H.J.Phys.Chem.C, 2007, 111: 3528-3537
[23] Lin C, Lo C, Luo L, Lu H, Hung C, Diau E.J.Phys.Chem.C, 2008, 113: 755-764
[24] Lin C, Wang Y, Hsu S, Lo C, Diau E.J.Phys.Chem.C, 2009, 114: 687-693
[25] Lo C, Hsu S, Wang C, Cheng Y, Lu H, Diau E, Lin C.J.Phys.Chem.C, 2010, 114(27): 12018-12023
[26] Lu H, Mai C, Tsia C, Hsu S, Hsieh C, Chiu C, Yeh C, Diau E.Phys.Chem.Chem.Phys., 2009, 11: 10270-10274
[27] Hsieh C, Lu H, Chiu C, Lee C, Chuang S, Mai C, Yen W, Hsu S, Diau E, Yeh C.J.Mater.Chem., 2010, 20: 1127-1134
[28] Lee C, Lu H, Lan C, Huang Y, Liang Y, Yen W, Liu Y, Lin Y, Diau E, Yeh C.Chem.Eur.J., 2009, 15: 1403-1412
[29] Lu H, Tsai C, Yen W, Hsieh C, Lee C, Yeh C, Diau E.J.Phys.Chem.C, 2009, 113: 20990-20997
[30] Park J, Lee H, Chen J, Shinokubo H, Osuka A, Kim D.J.Phys.Chem.C, 2008, 112: 16691-16699
[31] Rochford J, Chu D, Hagfeldt A, Galoppini E.J.Am Chem.Soc., 2007, 129: 4655-4665
[32] Tacconi N, Chanmanee W, Rajeshwar K, Rochford J, Galoppini E.J.Phys.Chem.C, 2009, 113: 2996-3006
[33] Lee C, Hupp J.Langmuir, 2010, 26: 3760-3765
[34] Jensen R, Van Ryswyk H, She C, Szarko J, Chen L, Hupp J.Langmuir, 2010, 26: 1401-1404
[35] Dy J T, Tamaki K, Sanehira Y, Nakazaki J, Uchida S, Kubo T, Segawa H.Electrochemistry, 2009, 77: 206-209
[36] Takahashi K, Takano Y, Yamaguchi Takahashi K, Takano Y, Yamaguchi T, Nakamura J, Yokoe C, Murata K.Synth.Met., 2005, 155: 51-55
[37] Takechi K, Shiga T, Motohiro T, Akiyama T, Yamada S, Nakayama H, Kohama K.Sol.Energy Mater.Sol.Cells, 2006, 90: 1322-1330
[38] Hagemann O, Jorgensen M, Krebs F.J.Org.Chem, 2006, 71: 5546-5559
[39] Huang X, Zhu C, Zhang S, Li W, Guo Y, Zhan X, Liu Y, Bo Z.Macromolecules, 2008, 41: 6895-6902
[40] Huang X, Shi Q, Chen W Q, Zhu C, Zhou W, Zhao Z, Duan X M.Zhan X, Macromolecules, 2010, 43: 9620-9626
[41] Tkachenko N, Chukharev V, Kaplas P, Tolkki A, Efimov A, Haring K, Viheriälä J, Niemi T, Lemmetyinen H.Appl.Surf.Sci., 2010, 256(12): 3900-3905
[42] Kira A, Tanaka M, Umeyama T, Matano Y, Yoshimoto N, Zhang Y, Ye S, Lehtivuori H, Tkachenko N, Lemmetyinen H, Imahori H, J.Phys.Chem.C, 2007, 111: 13618-13626
[43] Subbaiyan N K, Obraztsov L, Wijesinghe C A, Tran K, Kutner W, D'Souza F.J.Phys.Chem.C, 2009, 113: 8982-8989
[44] Subbaiyan N, Wijesinghe C, D'Souza F.J.Am.Chem.Soc., 2009, 131: 14646-14647
[45] Hasobe T, Fukuzumi S, Kamat P.J.Phys.Chem.B, 2006, 110: 25477-25484
[46] Kongkanand A, Domínguez R, Kamat P.Nano Lett., 2007, 7: 676-680
[47] Pagona G, Sandanayaka A, Hasobe T, Charalambidis G, Coutsolelos A, Yudasaka M, Iijima S, Tagmatarchis N.J.Phys.Chem.C, 2008, 112: 15735-15741

[1] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[2] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[3] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[4] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[5] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[6] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[7] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[8] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[9] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[10] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[11] Chao Zheng, Yizhong Dai, Lingfeng Chen, Mingguang Li, Runfeng Chen, Wei Huang. Principle and Technique of Sensitized Fluorescent Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2020, 32(9): 1352-1367.
[12] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[13] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[14] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[15] Lei Wang, Qin Zhou, Yuqiong Huang, Bao Zhang, Yaqing Feng. Interface Passivation Strategy: Improving the Stability of Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(1): 119-132.