中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (9): 1892-1905 Previous Articles   Next Articles

• Review •

Advance in Lithium Isotope Separation

Gu Zhi-Guo*, Li Zaijun, Yang Jie   

  1. School of Chemistry and Material Engineering, Jiangnan University, Wuxi 214122, China
  • Received: Revised: Online: Published:
PDF ( 2807 ) Cited
Export

EndNote

Ris

BibTeX

Lithium isotopes have important applications in nuclear energy source. Lithium isotope separation has attracted much attention of worldwide governments and scientists in the last few years. A lot of studies on the theory and application of lithium isotope separation have been developed, and great advances have been made in many domains, especial in the non-Hg extraction system. In this paper, the methods of lithium isotope separation such as lithium amalgam, extraction, ion exchange chromatography have been summarized, classified and reviewed in detail.

Contents
1 Introduction
2 Methods of lithium isotope separation
2.1 Lithium amalgam
2.2 Extraction
2.3 Ion exchange chromatography
2.4 Fractional crystallization and precipitation
2.5 Molten salt electrolysis
2.6 Molecular distillation
2.7 Laser
3 Conclusions and outlook

CLC Number: 

[1] Makhijani A, Yih K.Nuclear Wastelands: A Global Guide to Nuclear Weapons Production and Its Health and Environmental Effects.MIT Press.2000
[2] National Research Council (U.S.).Committee on Separations Technology and Transmutation Systems.National Academies Press.1996
[3] Lewis G N, Macdonald R T.J.Am.Chem.Soc., 1936, 58: 2519-2514
[4] Champetier G, Regnaut P.Bull.Soc.Chim.Fr., 1937, 4: 592-594
[5] Holleck L.Z.Elektrochem., 1938, 44: 111-120
[6] Taylor T I, Urey H C.J.Chem.Phys., 1938, 6: 429-438
[7] Johnston H L, Hutchison C A.J.Chem.Phys., 1940, 8: 869-877
[8] Perret L, RozAND l, SaIto E.PUAE.1958, 4: 595, 15/P/1267
[9] Collen B.Acta Chem.Scand., 1963, 17: 2410-2418
[10] Botter F, Molinari P, Dirian G.Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy.1965, 12: 436
[11] Arkenbout G J, Boerboom A J H, Smit W M.Ber.Bunsenges.Phys.Chem., 1966, 70: 658-664
[12] van Bennekom A J, Arkenbout G J, Smit W M.Ber.Bunsenges.Phys.Chem., 1967, 71: 215-218
[13] Okuyama K, Okada I, Saito N.J.Inorg.Nucl.Chem., 1973, 35: 2883-2895
[14] Palko A A, Drury J S, Begun G M.J.Chem.Phys.1976, 64: 1828-1837
[15] Taylor T I, Urey H C.J.Chem.Phys., 1937, 5: 597-598
[16] Rensselaer Polytechnic Institute, USAEC SO-3250, 1952
[17] Eucken A, Bratzler K.Z.Phys.Chem.Abt.A., 1935, 174: 269-273
[18] Fujie M, Fujii Y, Nomura M, Okamoto M.J.Nucl.Sci.Technol., 1986, 23: 330-337
[19] Knyazev D A, Tsivadze A Y, Klinskii G D, Levkin A V.Izv.Timiryazev.S-Kh.Akad., 1988, 1: 186
[20] Ryskin G Y, Ageev R P.Zh.Fiz.Khim., 1978, 52: 89-91
[21] Ryskin G Y, Ageev R P, Ivanenko G S.Zh.Fiz.Khim., 1978, 52: 1447-1449
[22] Ageev R P, Banasevich A N, Ivanenko G S, Ryskin G Y.Zh.Fiz.Khim., 1985, 59: 1295-1296
[23] Valfells A.US 4058440, 1977
[24] Cordova M H, Andrade C G.Nucleotecnica., 1993, 13: 15-24
[25] 程志翔 (Cheng Z X), 陈光华 (Chen G H), 曹本熹(Cao B X).Proc.-Jt.Meet.Chem.Eng., Chem.Ind.Eng.Soc.China Am.Inst.Chem.Eng., 1982, 2: 525-537
[26] Drury J S.United States Atomic Energy Commission, 1951, Y-785
[27] Martin F S, Holt R J W.Q.Rev.Chem.Soc., 1959, 13: 327-352
[28] Rozen A M, Mikhailichenko A I.Zh.Fiz.Khim., 1970, 44: 1737-1741
[29] Rozen A M, Mikhailichenko A I, Mamontova E P, Khromov Y F.Zh.Fiz.Khim., 1970, 44: 1742-1747
[30] Begun G M.ORNL-1874, 1950, 10
[31] Lee D A.Advances in Chemistry Series, Wachington D.C.1969, 89: 57
[32] 陈耀焕(Chen Y H).原子能科学技术(Atomic Energy Science and Technology), 1987, 21: 433-440
[33] Jepson B E.MLM-2622, 1979
[34] 支克正(Zhi K Z), 窦富全(Dou F Q), 杨坤山(Yang K S).原子能科学技术(Atomic Energy Science and Technology), 1982, 16: 686-690
[35] 支克正(Zhi K Z), 窦富全(Dou F Q), 杨坤山(Yang K S).原子能科学技术(Atomic Energy Science and Technology), 1983, 17: 347-352
[36] Nishizawa K, Ishino S, Watanabe H.J.Nucl.Sci.Technol.1984, 21: 694-701
[37] 姜延林(Jiang Y L), 张心祥(Zhang X X), 钱建华(Qian J H).原子能科学技术(Atomic Energy Science and Technology), 1986, 20: 2-8
[38] 方胜强(Fang S Q), 支克正(Zhi K Z), 傅立安(Fu L A).核化学与放射化学(Journal of Nuclear and Radiochemistry), 1987, 9: 142-147
[39] 傅立安(Fu L A), 方胜强(Fang S Q).核化学与放射化学(Journal of Nuclear and Radiochemistry), 1989, 11: 142-148
[40] 方胜强(Fang S Q), 傅立安(Fu L A).同位素(Journal of Isotopes), 1991, 4: 166-173
[41] 方胜强(Fang S Q), 傅立安(Fu L A).核化学与放射化学(Journal of Nuclear and Radiochemistry), 1991, 13: 87-90
[42] 方胜强(Fang S Q), 傅立安(Fu L A)高志昌(Gao Z C).核化学与放射化学(Journal of Nuclear and Radiochemistry), 1992, 14: 111-113
[43] Fang S, Fu L J.Radioanal.Nucl.Chem., 1994, 187: 25-32
[44] 方胜强(Fang S Q), 傅立安(Fu L A).同位素(Journal of Isotopes), 1994, 7: 168-170
[45] 金建南(Jin J N), 王全基(Wang Q J), 孟明礼(Meng M L).四川大学学报(Journal of Sichuan University), 1999, 36, 903-906
[46] Grote Z, Wizemann H D, Scopelliti R.Z.Anorg.Allg.Chem., 2007, 633: 858-864
[47] 杨国华(Yang G H), 曾权兴(Zeng Q X).稳定同位素分离(Stable Isotope Separation).北京: 原子能出版社(Beijing: Atomic Energy Press), 1989
[48] 邱陵(Qiu L).化学法分离同位素原理(Chemical Isotope Separaton Principces).北京: 原子能出版社(Beijing: Atomic Energy Press), 1990, 156-175
[49] Symons E A.Separ.Sci.Technol., 1985, 20: 633-651
[50] Kakihana H, Nomura T, Mori Y.J.Atomic Energy Soc.Japan, 1961, 3: 849
[51] Inoue Y, Kanzakik Y, Abe M.J.Nucl.Sci.Technol., 1996, 33: 671-672
[52] Makita Y, Kanoh H, Hirotsu T, Ooi K.Chem.Lett., 1998, 77-78
[53] Oi T, Uchiyama Y, Hosoe M, Itoh K.J.Nucl.Sci.Technol., 1999, 36: 1064-1068
[54] Oi T, Endoh M, Narimoto M, Hosoe M.J.Mater.Sci., 2000, 35: 509-513
[55] Takahashi H, Oi T.J.Mater.Sci., 2001, 36: 1621-1625
[56] Takahashi H, Miyajima T, Oi T.J.Nucl.Sci.Technol., 2002, 39: 463-466
[57] Kikuchi R, Takahashi H, Oi T.J.Mater.Sci., 2003, 38: 515-520
[58] Kanzaki Y, Suzuki N, Chitrakar R, Ohsaka T, Abe M.J.Phys.Chem., B 2002, 106: 988-995
[59] Takahashi H, Zhang Y H, Miyajima T, Oi T.J.Mater.Chem., 2006, 16: 1462-1469
[60] Glueckauf E, Barker K H.Discussions of the Faraday Soc, 1949, 7: 199-213
[61] Drury J S.United States Atomic Energy Commission, 1951, Y-777
[62] Lee D A.Bagen G M.J.Am.Chem.Soc., 1959, 81: 2332-2335
[63] Lee D A.J.Phys.Chem., 1960, 64: 187-188
[64] Lee D A.J.Am.Chem.Soc., 1961, 83: 1801-1803
[65] Katal'nikov S G, Revin V A, Andreev B M, Minaev V A.Atomnaya Energiya, 1961, 11: 528-532
[66] Lee D A.J.Chem.Eng.Data., 1961, 6: 565-566
[67] Kakihana H, Nomura T, Mori Y.J.Inorg.Nuc.Chem.1962, 24: 1145-1151
[68] Hagiwara Z, Takakura Y.J.Nucl.Sci.Technol., 1969, 6: 279-284
[69] Hagiwara Z, Takakura Y.J.Nucl.Sci.Technol., 1969, 6: 326-332
[70] Fujine S, Saito K, Naruse Y, Shiba K, Kosuge M, Itoi T, Kitsukawa T.Report 1981, JAERI-M-9735-9536
[71] Fujine S, Saito K, Shiba K.Sep.Sci.Technol., 1982, 17: 1309-1325
[72] Fujine S.Sep.Sci.Technol., 1982, 17: 1049-64
[73] Fujine S, Saito K, Shiba K, Itoi T.Sep.Sci.Technol., 1982, 17: 1545-63
[74] Fujine S, Saito K, Shiba K.Sep.Sci.Technol., 1983, 18: 15-31
[75] Kim D W, Kim S Y.J.Radioanal.Nucl.Chem., 1986, 107: 17-27
[76] Kim D W, Jung J H.J.Radioanal.Nucl.Chem., 1989, 130: 63-70
[77] Kim D W, Lee G S.J.Radioanal.Nucl.Chem., 1991, 149: 73-81
[78] Fujine S, Saito K, Shiba K.J.Nucl.Sci.Technol., 1983, 20: 439-440
[79] Nishizawa K, Watanabe H, Ishino S, Shinagawa M.J.Nucl.Sci.Technol., 1984, 21: 133-138
[80] Nishizawa K, Watanabe H.J.Nucl.Sci.Technol., 1986, 23: 843-845
[81] Kim D W, Jeon Y S, Eom T Y.J.Radioanal.Nucl.Chem., 1991, 150: 417-426
[82] Kim D W, Jeon Y S, Eom T Y.Bull.Korean Chem.Soc., 1995, 16: 683-786
[83] Kim D W, Jeon Y S, Jeong Y K.J.Radioanal.Nucl.Chem., 1995, 189: 219-227
[84] Kim D W, Hong C P, Kim C S.J.Radioanal.Nucl.Chem., 1997, 220: 229-231
[85] Kim D W, Kim B K, Park S R.J.Radioanal.Nucl.Chem., 1998, 232: 257-259
[86] Kim D W, Park S R, Kim S J.J.Radioanal.Nucl.Chem., 1998, 229: 165-168
[87] Kim D W, Kim C S, Jeon J S.J.Radioanal.Nucl.Chem., 1999, 241: 379-382
[88] Kim D W, Kim H J, Jeon J S.J.Radioanal.Nucl.Chem., 2000, 245: 571-574
[89] Kim D W.J.Radioanal.Nucl.Chem., 2002, 253: 67-71
[90] Ban Y, Nomura M, Fujii Y.J.Nucl.Sci.Technol., 2002, 39: 279-281
[91] Kim D W, Lee N S, Kim C S.Eur.Polym.J., 2002, 38: 2101-2108
[92] Otake K, Suzuki T, Kim H J.J.Nucl.Sci.Technol., 2006, 43: 419-422
[93] Jeon Y S, Jang N H, Kang B M.Bull.Korean Chem.Soc., 2007, 28: 451-456
[94] 孙培冬(Sun P D), 何丽梅(He L M), 毛明富(Mao M F), 彭奇均(Peng Q J).食品与发酵工业(Food and Fermentation Industries), 2002, 5: 64-69
[95] de Vries A E.Z.Naturf., 1959, 14a: 764
[96] Wagner G, Pelz A, Higatsberger M.J.Monat.Chem., 1954, 85: 464-466
[97] Wagner G, Pelz A J.Monat.Chem., 1955, 86: 414-18
[98] Peters K.Patent, 1959, AT 204052
[99] Peters K.British Patent, 1961, 866720
[100] Taniguchi S, Shioya I, Toyama O, Hayakawa T.Engineering and Natural Sciences, 1960, 9: 59-62
[101] Yanase S, Hayama W, Oi T Z.Naturforsch.2003, 58a: 306-312
[102] Zenzai K, Yanase S, Zhang Y H, Oi T.Prog.Nucl.Energy, 2008, 50: 494-498
[103] Yanase S, Oi T, Hashikawa S.J.Nucl.Sci.Technol., 2000, 37: 919-923
[104] Mouri M, Yanase S, Oi T.J.Nucl.Sci.Technol., 2008, 45: 384-389
[105] Black J R, Umeda G, Dunn B, McDonough W F, Kavner A.J.Am.Chem.Soc., 2009, 131: 9904-9905
[106] Fujie M, Fujii Y, Nomura M, Okamoto M.J.Nucl.Sci.Technol., 1986, 23: 330-337
[107] Burrows G.Molecular distillation.Oxford: Oxford University Press.1960: 78-86
[108] Trauger.Proc.Intern.Symposium Isotope Separation, Amsterdam, 1958, 1957: 350-367
[109] Malyusov V A, Malafeev N A, Orlov V Y, Umnik N N, Zhavoronkov N M.Kernenergie, 1962, 5: 251-256
[110] Malyusov V A, Orlov V Y, Malafeev N A, Umnik N N, Zhavoronkov N M.Atomnaya Energiya, 1961, 11: 435-439
[111] Katal'nikov S G, Andreev B M.Atomnaya Energiya, 1961, 11: 240-244
[112] Shimazu M, Takubo Y, Maeda Y.Japan.J.Appl.Phys., 1977, 16: 1275-1276
[113] Yamashita M, Kashiwagi H.US 4149077, 1979
[114] Li L, Wang Y, Li M.Chin.Phys., 1983, 3: 155
[115] Mariella R P.US 4320300, 1982
[116] Arisawa T, Maruyama Y, Suzuki Y, Shiba K.Appl.Phys.B, 1982, 28: 73-76
[117] Zhu X, Huang G, Mei G, Yang D.J.Phys.B, 1992, 25: 3307-3314
[118] Olivares I E, Duarte A E.Appl.Opt., 1999, 38: 7481-7485
[119] Olivares I E, Duarte A E, Saravia E A, Duarte F.J.Appl.Opt., 2002, 41: 2973-2977
[120] Saleem M, Hussain S, Rafiq M, Baig M A.J.Appl.Phys., 2006, 100: 053111/1-053111/7
[121] Balz J G, Bernheim R A, Gold L P.J.Chem.Phys., 1987, 86: 6-8
[122] Arisawa T, Suzuki Y, Maruyama Y, Shiba K.Chem.Phys., 1983, 81: 473-479
[123] Myers E G, Murnick D E, Softky W R.Appl.Phys., B, 1987, 43: 247-251
[124] Saleem M, Hussain S, Zia M A, Baig M A.Appl.Phys., B, 2007, 87: 723-726

[1] Zhendong Liu, Jiajie Pan, Quanbing Liu. Application of Machine Learning in the Design of Cathode Materials and Electrolytes for High-Performance Lithium Batteries [J]. Progress in Chemistry, 2023, 35(4): 577-592.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Guohui Zhu, Hongxian Huan, Dawei Yu, Xueyi Guo, Qinghua Tian. Selective Recovery of Lithium from Spent Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(2): 287-301.
[4] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[5] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[6] Xinyang Yue, Jian Bao, Cui Ma, Xiaojing Wu, Yongning Zhou. Three-Dimension Skeleton Supported Lithium Metal Composite Anodes through Thermal Infusing Strategy [J]. Progress in Chemistry, 2022, 34(3): 683-695.
[7] Chi Guo, Wang Zhang, Ji Tu, Shengrui Chen, Jiyuan Liang, Xiangke Guo. Construction of 3D Copper-Based Collector and Its Application in Lithium Metal Batteries [J]. Progress in Chemistry, 2022, 34(2): 370-383.
[8] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[9] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[10] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[11] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[12] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[13] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[14] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[15] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
Viewed
Full text


Abstract

Advance in Lithium Isotope Separation