中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (9): 1841-1853 Previous Articles   Next Articles

• Review •

Artificial Photosynthesis

Li Xiaohui, Fan Tongxiang*   

  1. State Key Lab of Metal Matrix Composites, Shanghai JiaoTong University, Shanghai 200240, China
  • Received: Revised: Online: Published:
PDF ( 2367 ) Cited
Export

EndNote

Ris

BibTeX

Artificial photosynthesis is a new, effective and eco-friendly way to utilize solar energy by mimicking the natural process of photosynthesis, through which plants, algae and many species of bacteria obtain energy by converting sunlight, water and carbon dioxide into carbohydrates and oxygen. Splitting water into hydrogen and oxygen through sunlight energy is also referred to as artificial photosynthesis. There are two types of artificial photosynthesis systems (APS): the first one is supramolecular mimicking natural photosystem’s structural and functional features; and the second one is artificial photocatalytic systems based on inorganic semiconductor materials. This article reviews the latest developments of artificial photosynthesis after a brief introduction to natural photosynthesis. From the point of view of basic principle, commonly used systems and energy conversion efficiency, this article systematically introduces the two types of artificial photosynthesis, among which a new research area, morph-genetic materials, is developed in inorganic semiconductor photocatalytic systems with the goal of achieving efficient APS integrated with hierarchical porous structures in nature. However, some properties of the APS, including stability, self-repair ability, lifetime and overall energy conversion efficiency, still need to be improved. Finally, some possible approaches which might be helpful to improve the APS' overall quality are proposed; and the prospective on the future development and application is tentatively discussed.

Contents
1 Introduction
2 Natural photosynthesis
3 Supramolecular
3.1 Supramolecular mimicking PS Ⅱ
3.2 Iron-only hydrogenase mimics
4 APS based on inorganic semiconductor
4.1 APS based on TiO2
4.2 APS based on other semiconductor materials
4.3 APS with morph-genetic materials
5 Conclusion and outlook

CLC Number: 

[1] Nault R M.Basic Research Needs for Solar Energy Utilization, (2005-04-18)..http: //www.sc.doe.gov/bes/reports/files/SEU_rpt.pdf
[2] 王明哲(Wang M Z).现代商贸工业(Modern Business Trade Industry), 2010, 24: 33-34
[3] Baxter J, Bian Z, Chen G, Danielson D, Dresselhaus M S, Fedorov A G, Fisher T S, Jones C W, Maginn E, Kortshagen U, Manthiram A, Nozik A, Rolison D R, Sands T, Shi L, Shollh D, Wu Y Y.Energy Environ.Sci., 2009, 2: 559-588
[4] Kasting J F.Science, 2001, 293: 819-820
[5] 武维华(Wu Y H).植物生理学(Plant Physiology).北京: 科学出版社(Beijing: Science Press), 2008.130-162
[6] Tunuli M S, Fendler J H.J.Am.Chem.Soc., 1981, 103: 2507-2513
[7] Meyer T J.Acc.Chem.Res., 1989, 22: 163-170
[8] Lehn J M.Proc.Indian Acad.Sci.(Chem.Sci.), 1994, 106: 915-922
[9] Sun L C, Åkermark B, Hammarström L, Styring L.ACS Symposium Series, 2003, 852: 219-244
[10] Xu Y H, Duan L L, Tong L P, Åkermark B, L C.Chem.Commun., 2010, 46: 6506-6508
[11] Fujishima A, Honda K.Nature, 1972, 238: 37-38
[12] Kudo A, Miseki Y.Chem.Soc.Rev., 2009, 38: 253-278
[13] McConnell I, Li G H, Brudvig G W.Chem.Biol., 2010, 17: 434-447
[14] Benniston A C, Harriman A.Mater.Today, 2008, 11: 26-34
[15] 李杰芬(Li J F).生物学通报(Bulletin of Biology), 1980, 2: 21-22
[16] 哈益明(Ha Y M).山东农业大学学报(Journal of Shandong Agricultural University), 1989, 4: 89-93
[17] Ferreira K N, Iverson T M, Maghlaoui K, Barber J, Iwata S.Science, 2004, 303: 1981-1988
[18] 陈声明(Chen S M), 贾小明(Jia X M), 叶旭红(Ye X H).环境污染与防治(Environmental Pollution & Control), 1994, 16: 29-31
[19] 何成江(He C J), 王梅(Wang M), 李敏娜(Li M N), 孙立成(Sun L C).化学进展(Progress in Chemistry), 2004, 16(2): 250-255
[20] Sun L C, Berglund H, Davydov R, Norrby T, Hammarstro1m L, Korall P, Bo1rje A, Philouze C, Berg K, Tran A, Andersson M, Stenhagen G, Mårtensson J, Almgren M, Styring S, Åkermark B.Chem.Soc.Rev., 2001, 30: 36-49
[21] Sun L C, Hammarström L, Åkermarka B, Styringc S.J.Am.Chem.Soc., 1997, 119: 6996-7004
[22] Gersten S W, Samuels G J, Meyer T J.J.Am.Chem.Soc., 1982, 104: 4029-4030
[23] Gilbert J A, Eggleston D S, Murphy W R, Geselowitz D A, Gersten S W, Hodgson D J, Meyer T J.J.Am.Chem.Soc., 1985, 107: 3855-3864
[24] Duan L L, Fischer A, Xu Y H, Sun L C.J.Am.Chem.Soc., 2009, 131: 10397-10399
[25] Nyhlén J, Duan L L, Åkermark B, Sun L C, Privalov T.Angew.Chem., 2010, 122: 1817-1821
[26] Duan L L, Xu Y H, Gorlov M, Tong L P, Andersson S, Sun L C.Chem.Eur.J., 2010, 16: 4659-4668
[27] 陈向东(Chen X D), 高峰(Gao F), 王锐(Wang R), 程萍(Cheng P), 杨继平(Yang J P).复旦学报自然科学版(Journal of Fudan University: Natural Science), 2008, 47: 668-672
[28] 陈向东(Chen X D), 高峰(Gao F), 程萍(Cheng P), 王锐(Wang R), 杨继平(Yang J P).合肥工业大学学报自然科学版(Journal of Hefei University of Technology), 2009, 32: 1094-1096
[29] 陶敏莉(Tao M L).天津大学博士论文(Doctoral Dissertation of Tianjin University), 2007
[30] Kodis G, Liddell P A, Garza L, Clausen P C, Lindsey J S, Moore A L, Moore T A, Gust D.J.Phys.Chem.A, 2002, 106: 2036-2048
[31] Imahori H.Bull.Chem.Soc.Jpn., 2007, 80: 621-636
[32] 刘芬(Liu F).山东师范大学硕士论文(Master Dissertation of Shandong Normal University), 2009
[33] Kadish K M, Ruoff R S.Fullerenes, NY: John Wiley & Sons, 2000.
[34] Peters J W, Lanzilotta W N, Lemon B J.Science, 1998, 282: 1853-1858
[35] Nicolet Y, Piras C, Legrand P, Hatchikian E C.Structrue, 1999, 7: 13-23
[36] Nicolet Y, Lemon B J, Fontecilla-Camps J C.Trends Biochem.Sci., 2000, 138-143
[37] Pereira A S, Tavares P, Moura I, Moura J J G, Huynh B H.J.Am.Chem.Soc., 2001, 123: 2771-2782
[38] 王福军(Wang F J).大连理工大学博士论文(Doctoral Dissertation of Dalian University of Technology), 2007
[39] 侯军(Hou J).大连理工大学博士论文(Doctoral Dissertation of Dalian University of Technology), 2006
[40] Gloaguen F, Lawrence J D, Rauchfuss T B.J.Am.Chem.Soc., 2001, 123: 9476-9477
[41] 高伟明(Gao W M).大连理工大学博士论文(Doctoral Dissertation of Dalian University of Technology), 2007
[42] Vlugt J I, Rauchfuss T B, Wilson S R.Chem.Eur.J., 2006, 12: 90-98
[43] Song L C, Tang M Y, Su F H, Hu Q M.Angew.Chem., 2006, 118: 1148-1151
[44] Song L C, Tang M Y, Mei S Z, Huang J H, Hu Q M.Organometallics, 2007, 26: 1575-1577
[45] Gloaguen F, Lawrence J D, Rauchfuss T B, Bénard M, Rohmer M M.Inorg.Chem., 2002, 41: 6573-6582
[46] Ott S, Kritikos M, Åkermark B, Sun L C, Lomoth R.Angew.Chem.Int.Ed., 2004, 43: 1006-1006
[47] Zhang P, Wang M, Na Y, Li X Q, Jiang Y, Sun L C.Dalton Trans., 2010, 39: 1204-1206
[48] 曾波(Zeng B).西北工业大学硕士论文(Master Dissertation of Northwestern Polytechnical University), 2008
[49] Woodhousea M, Parkinson B A.Chem.Soc.Rev., 2009, 38: 197-210
[50] 郑先君(Zheng X J), 姜巧娟(Jiang Q J), 魏丽芳(Wei L F), 付永(Fu Y), 魏明宝(Wei M B).郑州轻工业学院学报(Journal of Zhengzhou University of light Industry), 2008, 23: 30-36
[51] Zhang J Z, Feng Z C, Li M J, Li C.Chem.Angew.Chem.Int.Ed., 2008, 47: 1766-1769
[52] Ngamsinlapasathian S, Sakulkhaemaruethai S, Pavasupree S, Kitiyanan A, Sreethawong T, Suzuki Y, Yoshikawa S.J.Photochem.Photobiol.A: Chemistry, 2004, 164: 145-151
[53] 王道爱(Wang D A), 刘盈(Liu Y), 王成伟(Wang C W), 周峰(Zhou F).化学进展(Progress in Chemistry), 2010, 22: 1035-1043
[54] Feng X, Shankar K, Varghese O K, Paulose M, Latempa M J, Grimes C A.Nano Lett., 2008, 8: 3781-3786
[55] Thulin L, Guerra J.Phys.Rev.B77, 2008, 195112: 1-5
[56] Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q.Nature, 2008, 453: 638-642
[57] Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q.J.Am.Chem.Soc., 2009, 131: 4078-4083
[58] 谭君(Tan J), 王平(Wang P), 闫书一(Yan Y S).四川化工(Sichuan Chemical Industry), 2008, 11(4): 8-10
[59] Varghese O K, Paulose M, LaTempa T J, Grimes C A.Nano Lett., 2009, 9(2): 731-737
[60] 于哲勋(Yu Z X), 李冬梅(Li D M), 秦达(Qin D), 孙惠成(Sun H C), 张一多(Zhang Y D), 罗艳红(Luo Y H), 孟庆波(Meng Q B).中国材料进展(Materials China), 2009, 128: 8-15
[61] 郝三存(Hao S C).华侨大学硕士论文(Master Dissertation of Huaqiao University), 2003
[62] Wasielewski M R.Chem.Rev., 1992, 92: 435-461
[63] Nakamura Y, Aratani N, Osuka A.Chem.Soc.Rev., 2007, 36: 831-845
[64] Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Pechy P, Graetzel M.Chem.Commun., 2008, 41: 5194-5196
[65] Ni M, Leung M K H, Leung D Y C, Sumathy K.Renew.Sust.Energ.Rev., 2007, 11: 40-425
[66] Ozcan O, Yukruk F, Akkaya E U, Uner D.Applied Catalysis B: Environmental, 2007, 71: 291-297
[67] Astruc D, Boisselier E, Ornelas C.Chem.Rev., 2010, 110: 1857-1959
[68] Youngblood W J, Lee S H A, Maeda K, Mallouk T E.Acc.Chem.Res., 2009, 42(12): 1966-1973
[69] Li L, Duan L L, Xu Y H, Gorlov M, Hagfeldt A, Sun L C.Chem.Commun., 2010, 46: 7307-7309
[70] Dhanalakshmi K B, Latha S, Anandan S, Maruthamuthu P.Int.J.Hydrogen Energy, 2001, 26: 669-674
[71] Gurunathan K, Maruthamuthu P, Sastri M V C.Int.J.Hydrogen Energy, 1997, 22(1): 57-62
[72] Kim Y I, Atherton S J, Brigham E S, Mallouk T E.J.Phys.Chem., 1993, 97: 11802-11810
[73] Kaschak D M, Lean J T, Waraksa C C, Saupe G B, Usami H, Mallouk T E.J.Am.Chem.Soc., 1999, 121: 3435-3445
[74] So W W, Kim K J, Moon S J.Int.J.Hydrogen Energy, 2004, 29: 229-234
[75] Koca A, Sahin M.Int.J.Hydrogen Energy, 2002, 27: 363-367
[76] Keller V, Garin F.Catal.Commun., 2003, 4: 377-83
[77] Choi C, Termin A, Hoffmann M R.J.Phys.Chem., 1994, 98(51): 13669-13679
[78] 吴雪松(Wu X S), 唐星华(Tang X H), 张波(Zhang B).化工技术与开发(Technology & Development of Chemical Industry), 2009, 38: 33-39
[79] Liu G, Sun C H, Yan X X, Cheng L N, Chen Z G, Wang X W, Wang L Z, Smith S C, Lu G Q, Cheng H M.J.Mater.Chem., 2009, 19: 2822-2829
[80] Liu G, Wang L Z, Sun C H, Chen Z G, Yan X X, Cheng L N, Cheng H M, Lu G Q.Chem.Commun., 2009, 11: 1383-1385
[81] Liu G, Wang L Z, Sun C H, Yan X X, Wang X W, Chen Z G, Smith S C, Cheng H M, Lu G Q.Chem.Mater., 2009, 21: 1266-1274
[82] 李越湘(Li Y X), 谢艳招(Xie Y Z), 彭绍琴(Peng S Q), 吕功煊(Lv G X), 李树本(Li S B).高等学校化学学报(Chemical Journal of Chinese Universites), 2007, 28: 156-158
[83] Wang H, Deutsch T, Turner J A.J.Electrochem.Soc., 2008, 155(5): 91-96
[84] 李艳华(Li Y H), 黄可龙(Huang K L), 曾冬铭(Zeng D M), 刘素琴(Liu S Q).化学进展(Progress in Chemistry), 2010, 22: 2019-2025
[85] 温和瑞(Wen H R), 张镇雷(Zhang Z L), 韩雪峰(Han X F).化学世界(Chemical World), 2008, 1: 52-56
[86] Maeda K, Domen K.J.Phys.Chem.C, 2007, 111: 7851-7861
[87] Hitoki G, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K.Chem.Commun., 2002, 1698-1699
[88] Hitoki G, Ishikawa A, Takata T, Kondo J N, Hara M, Domen K.Chem.Lett., 2002, 31: 736-737
[89] Wang X L, Feng Z C, Fan D Y, Fan F T, Li C.Cryst.Growth Des., 2010, 10: 5312-5318
[90] Bao N Z, Shen L M, Takata T, Domen K.Chem.Mater., 2008, 20: 110-117
[91] Tsuji I, Shimodaira Y, Kato H, Kobayashi H, Kudo A.Chem.Mater., 2010, 22: 1402-1409
[92] Kudo A.Int.J.Hydrogen Energy, 2007, 32: 2673 -2678
[93] Lei Z B, You W S, Liu M Y Zhou G H, Takata T, Hara M, Domen K, Li C.Chem.Commun., 2003, 2142-2143
[94] Liu M Y, You W S, Lei Z B, Zhou G H, Yang J J, Wu G P, Ma G J, Luan G Y, Takata T, Hara M, Domen K, Li C.Chem.Commun., 2004, 2192-2193
[95] 马贵军(Ma G J), 雷志斌(Lei Z B), 鄢洪建(Yan H J), 宗旭(Zong X), 李灿(Li C).催化学报(Chinese Journal of Catalysis), 2009, 30: 73-77
[96] Wang X W, Liu G, Chen Z G, L F, Lu G Q, Cheng H M.Electrochem.Commun., 2009, 11: 1174-1178
[97] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M.Nat.Mater., 2009, 8: 76-80
[98] Wang X C, Maeda K, Chen X F, Takanabe K, Domen K, Hou Y D, Fu X Z, Antonietti M.J.Am.Chem.Soc., 2009, 131: 1680-1681
[99] Liu G, Niu P, Sun C H, Smoth S C, Chen Z G, Lu G Q, Cheng H M.J.Am.Chem.Soc., 2010, 132: 11642-11648
[100] Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L, Li C.J.Am.Chem.Soc., 2008, 130: 7176-7177
[101] Zong X, Wu G P, Yan H J, Ma G J, Shi J Y, Wen F Y, Wang L, Li C.J.Phys.Chem.C, 2010, 114: 1963-1968
[102] 温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C).化学进展(Progress in Chemistry), 2009, 21: 2285-2302
[103] Wang X W, Liu G, Chen Z G, Li F, Wang L Z, Lu G Q, Cheng H M.Chem.Commun., 2009, 3452-3454
[104] Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C.J.Catal., 2009, 266: 165-168
[105] Geletii Y U, Botar B, Kögerler P, Hillesheim D A, Musaev D G, Hill C L.Angew.Chem.Int.Ed., 2008, 47: 3896-3899
[106] Jiao F, Frei H.Angew.Chem., 2009, 121: 1873-1876
[107] Ng Y H, Iwase A, Kudo A, Amal R.J.Phys.Chem.Lett., 2010, 1(17): 2607-2612
[108] Ma B J, Yang J H, Han H X, Wang J T, Zhang X H, Li C.J.Phys.Chem.C, 2010, 114: 12818-12822
[109] Kato H, Asakura K, Kudo A.J.Am.Chem.Soc., 2003, 125: 3082-3089
[110] Miseki Y, Kato H, Kudo A.Energy Environ.Sci., 2009, 2: 306-314
[111] Sasaki Y, Iwase A, Kato H, Kudo A.J.Catal., 2008, 259: 133-137
[112] Higashi M, Abe R, Ishikawa A, Takata T, Ohtani B, Domen K.Chem.Lett., 2008, 37: 138-139
[113] Sasaki Y, Nemoto H, Saito K, Kudo A.J.Phys.Chem.C, 2009, 113: 17536-17542
[114] Ma B J, Wen F Y, Jiang H F, Yang J H, Ying P L, Li C.Catal.Lett., 2010, 134: 78-86
[115] Maeda K, Sakamoto N, Ikeda T, Ohtsuka H, Xiong A, Lu D, Kanehara M, Teranishi T, Domen K.Chem.Eur.J., 2010, 16: 7750-7759
[116] Kang T S, Smith A P, Taylor B E, Durstock M F.Nano Lett., 2009, 9(2): 601-606
[117] Sun B, Fan T, Zhang D, Okabe T.Carbon, 2004, 42: 177-182
[118] Liu Z, Fan T, Zhang W, Zhang D.Microporous Mesoporous Mater., 2005, 85: 82-88
[119] Fan T X, Li X F, Liu Z T, Gu J, Zhang D.J.Am.Ceram.Soc., 2006, 89(11): 3511-3515
[120] Zhang W, Zhang D, Fan T X, Ding J, Guo Q X, Ogawa H.Nanotechnology, 2006, 17: 840-844
[121] Zhang W, Zhang D, Fan T, Gu J, Ding J, Wang H, Guo Q, Ogawa H.Chem.Mater., 2009, 21: 33-40
[122] Zhang W, Zhang D, Fan T, Gu J, Ding J, Wang H, Guo Q, Ogawa H.Microporous Mesoporous Mater., 2006, 92: 227-233
[123] Li X, Fan T, Zhou H, Zhu B, Ding J, Zhang D.Microporous Mesoporous Mater., 2008, 116: 478-484
[124] Sun B, Fan T, Xu J, Zhang D.Mater.Lett., 2005, 59: 2325-2328
[125] Fan T, Sun B, Gu J, Zhang D, Lau L W M.Scripta Mater., 2005, 53: 893-897
[126] Zhou H, Fan T, Zhang D, Guo Q, Ogawa H.Chem.Mater., 2007, 19: 2144-2146
[127] Zhou H, Fan T, Li X, Ding J, Zhang D, Li X, Gao Y.Eur.J.Inorg.Chem., 2009, 211-215
[128] Zhou H, Fan T, Zhang D.Microporous Mesoporous Mater., 2007, 100: 322-327
[129] Shenton W, Douglas T, Young M, Stubbs G, Mann S.Adv.Mater., 1999, 11(3): 253-256
[130] Nam Y S, Magyar A P, Lee D, Kim J W, Yun D S, Park H, Pollom T S, Weitz D A, Belcher A M.Nature Nanotech., 2010, 5: 340-344
[131] Zhao Q, Fan T, Ding J, Zhang D, Guo Q, Kamada M.Carbon, doi: 10.1016/j.carbon.2010.10.048
[132] Han T, Fan T, Chow S, Zhang D.Bioresour.Technol., 2010, 101: 6829-6835
[133] Shi N, Li X, Fan T, Zhou H, Ding J, Zhang D, Zhu H.Energy Environ.Sci., doi: 10.1039/c0ee00363h
[134] Zhou H, Fan T, Li X, Zhang D, Guo Q, Ogawab H.J.Mater.Chem., 2009, 19: 2695-2703
[135] Zhou H, Li X, Fan T, Osterloh F E, Ding J, Sabio E M, Zhang D, Guo Q X.Adv.Mater., 2010, 22: 951-956
[136] Li X, Fan T, Zhou H, Chow S, Zhang W, Zhang D, Guo Q, Ogawa H.Adv.Funct.Mater., 2009, 19: 45-56
[137] Zhou H, Fan T X, Zhang D.ChemCatChem, doi: 10.1002/cctc.201000266
[138] Liu C, Li F, Ma L P, Cheng H M.Adv.Mater., 2010, 22: E28-E62

[1] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[4] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[5] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[6] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[7] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[8] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[9] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[10] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[11] Xinhua Cao, Qingqing Han, Aiping Gao, Guixia Wang. Supramolecular Gel with Response Towards Gaseous Acid and Organic Amine [J]. Progress in Chemistry, 2021, 33(9): 1538-1549.
[12] Shicheng Jin, Shuang Yan. Nanostructure Construction and Sensing Mechanism of Metal Oxides for Room Temperature Gas Sensing [J]. Progress in Chemistry, 2021, 33(12): 2348-2361.
[13] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[14] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[15] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
Viewed
Full text


Abstract

Artificial Photosynthesis