中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (7): 1566-1581 Previous Articles   

Special Issue: 计算化学

• Article •

Recent Advances in Computational Actinide Chemistry

Dongqi Wang1,2, Wilfred F. van Gunsteren1   

  1. 1. Laboratory of Physical Chemistry,Swiss Federal Institute of Technology, ETH, CH-8093 Zürich, Switzerland;
    2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
PDF ( 1701 ) Cited
Export

EndNote

Ris

BibTeX

We briefly reviewed the recent advances in computational actinide chemistry during the past ten years. They cover two issues: the geometrical and electronic structures, and reactions. The former addresses the An—O and M—An (M is another metal atom including An) bonds in the actinide molecular systems, and the latter the hydration and ligand exchange, the disproportionation, the oxidation, the reduction of uranyl, hydroamination, and the photolysis of uranium azide.

Contents
1 Introduction
2 Treatment of relativistic effects
3 Computational Models
3.1 Density functional theory
3.2 Wavefunction based ab initio methods
4 Applications in actinide chemistry
4.1 The role of 5f orbitals
4.2 Geometry and electronic structure
4.3 Reactions
5 Conclusion and outlook
6 Acknowledgement

 


[1] Cotton S. Lanthanide and Actinide Chemistry, 2006, John Wiley & Sons, Ltd.

[2] Shannon R. D. Acta. Crystallogr. Sect. A, 1976, 32: 751-767

[3] Arko A J, Joyce J J, Havela L. The Chemistry of the Actinide and Transactinide Elements, 3rd Ed. (Eds. Morss L R, Edelstein N M, Fuger J), Springer, 2008

[4] Burns C J, Eisen M S. The Chemistry of the Actinide and Transactinide Elements, 3rd Ed. (Eds. Morss L R, Edelstein N M, Fuger J), Springer, 2008

[5] 刘文剑(Liu W J). 化学进展(Prog. Chem. ), 2007, 19: 833-851

[6] Liu W. Mol. Phys., 2010, 108: 1679-1706

[7] Li J, Hu H S, Lyon J T, Andrews L. Angew. Chem. Int. Ed. , 2007, 46: 9045-9049

[8] Lyon J T, Hu H S, Andrews L, Li J. PNAS, 2007, 104: 18919-18924

[9] 胡憾石(Hu H S), 吴国是(Wu G S), 李隽(Li J). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2009, 31 (Suppl. ): 25-34

[10] Xiao H, Hu H S, Schwarz W H E, Li J. J. Phys. Chem. A, 2010, 114: 8837-8844

[11] Hu S W, Wang X Y, Chu T W, Liu X Q. J. Phys. Chem. A, 2008, 112: 8877-8883

[12] Hu S W, Wang X Y, Chu T W, Liu X Q. J. Phys. Chem. A, 2009, 113: 9243-9248

[13] Gagliardi L, Roos B O. Chem. Soc. Rev., 2007, 36: 893-903

[14] Schreckenbach G, Hay P J, Martin R L. J. Comput. Chem., 1999, 20: 70-90

[15] Runde W. Los Alamos Sci. , 2000, 26: 392-411

[16] Kaltsoyannis N. Chem. Soc. Rev., 2003, 32: 9-16

[17] May I, Copping R, Cornet S M, Talbot-Eeckelears C E, Gaunt A J, John G H, Redmond M P, Sharrad C A, Sutton A D, Collison D, Fox O D, Jones C J, Sarsfield M J, Taylor R J. J. Alloys Compd., 2007, 444/445: 383-386

[18] Schreckenbach G, Shamov G A. Acc. Chem. Res., 2010, 43: 19-29

[19] Heaven M C. Phys. Chem. Chem. Phys., 2006, 8: 4497-4509

[20] Pyykk P. Chem. Rev., 1988, 88: 563-594

[21] Kaltsoyannis N, Hay P J, Li J, Blaudeau J P, Bursten B E. The Chemistry of The Actinide and Transactinide elements, 3rd Ed. ( Eds. Morss L R, Edelstein N M, Fuger J). 2006

[22] Wezenbeek E M, Baerends E J, Ziegler T. Inorg. Chem., 1995, 34: 238-246

[23] Saue T, Faegri K, Gropen O. Chem. Phys. Lett., 1996, 263: 360-366

[24] Bouten R, Baerends E J, van Lenthe E, Visscher L, Schreckenbach G, Ziegler T. J. Phys. Chem. A, 2000, 104: 5600-5611

[25] Schreckenbach G, Wolff S K, Ziegler T. J. Phys. Chem. A, 2000, 104: 8244-8255

[26] Suzuki S, Li M F, Ariizumi T. J. Phys. Soc. Jpn. , 2008, 77: art. no. 074703

[27] De Jong W A, Visscher L, Nieuwpoort W C. J. Mol. Struc. (Theochem), 1999, 458: 41-52

[28] Lee M, Kim M S. ChemPhysChem, 2006, 7: 2064-2066

[29] Hay P J, Martin R L, Schreckenbach G. J. Phys. Chem. A, 2000, 104: 6259-6270

[30] Schimmelpfennig B, Privalov T, Wahlgren U, Grenthe I. J. Phys. Chem. A, 2003, 107: 9705-9711

[31] Van Lenthe E, Baerends E J, Snijders J G. J. Chem. Phys., 1993, 99: 4597-4610

[32] Van Lenthe E, Baerends E J, Snijders J G. J. Chem. Phys., 1994, 101: 9783-9792

[33] Van Lenthe E, Ehlers A E, Baerends E J. J. Chem. Phys., 1999, 110: 8943-8953

[34] Barysz M, Sadlej A J. J. Mol. Struct. (Theochem), 2001, 573: 181-200

[35] Christiansen P A, Ermler W C, Pitzer K S. Annu. Rev. Phys. Chem. , 1985, 36: 407-432

[36] Dolg M. Theor. Comput. Chem., 2002, 11: 793-862

[37] Iché-Tarrat N, Marsden C J. J. Phys. Chem. A, 2008, 112: 7632-7642

[38] Odoh S O, Schreckenbach G. J. Phys. Chem. A, 2010, 114: 1957-1963

[39] Beck E V, Brozell S R, Blaudeau J P, Burggraf L W, Pitzer R M. J. Phys. Chem. A, 2009, 113: 12626-12631

[40] Gibson J K, Haire R G, Marcalo J, Santos M, de Matos A P, Mrozik M K, Pitzer R M, Bursten B E. Organometallics, 2007, 26: 3947-3956

[41] Mazzanti M, Wietzke R, Pécaut J, Latour J M, Maldivi P, Remy M. Inorg. Chem., 2002, 41: 2389-2399

[42] Castro-Rodrigues I, Olsen K, Gantzel P, Meyer K. J. Am. Chem. Soc., 2003, 125: 4565-4571

[43] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865-3868. Errata, Phys. Rev. Lett., 1997, 78: 1396-1396

[44] Adamo C, Barone V. J. Chem. Phys., 1999, 110: 6158-6170

[45] Tao J M, Perdew J P, Staroverov V N, Scuseria G E. Phys. Rev. Lett., 2003, 91: art. no. 146401

[46] (a) Becke A D. Phys. Rev. A, 1988, 38: 3098-3100; (b) Lee C, Yang W, Parr R G. Phys. Rev. B, 1988, 37: 785-789

[47] Georges A, Kotliar G, Krauth W, Rozenberg M J. Rev. Mod. Phys., 1996, 68: 13-125

[48] (a) Anisimov V I, Poteryaev A I, Korotin M A, Anokhin A O, Kotliar G. J. Phys. : Condens. Matter, 1997, 9: 7359; (b) Lichtenstein A I, Katsnelson M I. Phys. Rev. B, 1998, 57: 6884

[49] (a) Galitskii V M. Zh. Eksp. Teor. Fiz., 1958, 34: 151; (b) Kanamori J. Prog. Theor. Phys. , 1963, 30: 275; (c) Bickers N E, Scalapino D J, White S R. Phys. Rev. Lett., 1989, 62: 961; (d) Bickers N E, Scalapino D. J. Ann. Phys. (N. Y. ), 1991, 193: 206

[50] Pourovskii L V, Katsnelson M I, Lichtenstein A I. Phys. Rev. B, 2005, 72: art. no. 115106

[51] Silva-Junior M R, Schreiber M, Sauer S P A, Thiel W. J. Chem. Phys., 2008, 129: art. no. 104103

[52] Gao J, Liu W, Song B, Liu C. J. Chem. Phys., 2004, 121: 6658-6666

[53] Vallet V, Macak P, Wahlgren U, Grenthe I. Theor. Chem. Acc. , 2006, 115: 145-160

[54] Helgaker T, Jrgensen P, Olsen J. Molecular Electronic Structure Theory, Chichester: Wiley, 2000

[55] Head-Gordon M, Pople J A, Frisch M J. Chem. Phys. Lett., 1988, 153: 503-506

[56] Roos B O, Taylor P R, Siegbahn E M. Chem. Phys., 1980, 48: 157-173

[57] Huber S M, Shahi A R M, Aquilante F, Cramer C J, Gagliardi L. J. Chem. Theory Comput., 2009, 5: 2967-2976

[58] (a) Andersson K, Malmqvist P A, Roos B O, Sadlej A J, Wolinski K. J. Phys. Chem., 1990, 94: 5483-5488;(b) Andersson K, Malmqvist P A, Roos B O. J. Chem. Phys., 1992, 96: 1218-1226

[59] Szabo A, Ostlund N S. Modern Quantum Chemistry, New York: McGraw-Hill, 1989

[60] Mukherjee D, Pal S. Adv. Quantum Chem., 1989, 20: 291-373

[61] Kaldor U, Eliav E. Adv. Quantum Chem., 1998, 31: 313-336

[62] Borschevsky A, Eliav E, Vilkas M J, Ishikawa Y, Kaldor U. Eur. Phys. J. D, 2007, 45: 115-119

[63] Malrieu J P, Durand P, Daudey J P. J. Phys. A, 1985, 18: 809-813

[64] Koren T, Eliav E, Ishikawa Y, Kaldor U. J. Mol. Struc: THEOCHEM, 2006, 768: 127-132

[65] Bouchet J, Jomard G. J. Alloys Compd., 2007, 444/445: 271-273

[66] Elgazzar S, Rusz J, Oppeneer P M. Phys. Rev. B, 2010, 81: art. no. 235117

[67] Hotta T. J. Alloys Compd., 2007, 444/445: 162-167

[68] Dremov V V, Sapozhnikov F A, Samarin S I, Modestov D G, Chizhkova N E. J. Alloys Compd., 2007, 444/445: 197-201

[69] Stan M, Ramirez J C, Cristea P, Hu S Y, Deo C, Uberuaga B P, Srivilliputhur S, Rudin S P, Wills J M. J. Alloys Compd., 2007, 444/445: 415-423

[70] Jomard G, Berlu L, Rosa G, Faure P, Nadal J, Baclet N. J. Alloys Compd., 2007, 444/445: 310-313

[71] Gryaznov D, Heifetsa E, Sedmidubsky D. Phys. Chem. Chem. Phys., 2010, 12: 12273-12278

[72] Ingram K I M, Kaltsoyannis N, Gaunt A J, Neu M P. J. Alloys Compd., 2007, 444/445: 369-375

[73] Gaunt A J, Scott B L, Neu M P. Angew. Chem. Int. Ed., 2006, 45: 1638-1641

[74] Ingram K I M, Tassell M J, Gaunt A J, Kaltsoyannis N. Inorg. Chem., 2008, 47: 7824-7833.

[75] Roger M, Belkhiri L, Thuéry P, Arliguie M, Fourmigué A, Boucekkine M, Ephritikine M. Organometallics, 2005, 24: 4940-4952

[76] Arnold P L, Turner Z R, Kaltsoyannis N, Pelekanaki P, Bellabarba R M, Tooze R P. Chem. Eur. J., 2010, 16: 9623-9629

[77] Tsipis A C, Kefalidis C E, Tsipis C A. J. Am. Chem. Soc., 2008, 130: 9144-9155

[78] Castro L, Yahia A, Maron L. ChemPhysChem, 2010, 11: 990-994

[79] McGlynn S P, Smith J K, Neely W C. J. Chem. Phys., 1961, 35: 105-116

[80] Dyall K G. Mol. Phys., 1999, 96: 511-518

[81] Straka M, Dyall K G, Pyykk P. Theor. Chem. Acc., 2001, 106: 393-403

[82] Berard J J, Schreckenbach G, Arnold P L, Patel D, Love J B. Inorg. Chem., 2008, 47: 11583-11592

[83] Pan Q J, Schreckenbach G. Inorg. Chem., 2010, 49: 6509-6517

[84] Shamov G A, Schreckenbach G. J. Phys. Chem. A, 2005, 109: 10961-10974. Erratum, J. Phys. Chem. A, 2006, 110: 12072

[85] Infante I, Eliav E, Vilkas M J, Ishikawa Y, Kaldor U, Visscher L. J. Chem. Phys., 2007, 127 : art. no. 124308

[86] Ruipérez F, Danilo C, Réal F, Flament J P, Vallet V, Wahlgren U. J. Phys. Chem. A, 2009, 113 : 1420-1428

[87] Gagliardi L, Grenthe I, Roos B O. Inorg. Chem., 2001, 40 : 2976-2978

[88] Docrat T I, Mosselmans J F W, Charnock J M, Whiteley M W, Collison D, Livens F R, Jones C, Edmiston M J. Inorg. Chem., 1999, 38: 1879-1882

[89] Vallet V, Privalov T, Wahlgren U, Grenthe I. J. Am. Chem. Soc., 2004, 126 : 7766-7767

[90] La Macchia G, Infante I, Raab J, Gibson J K, Gagliardi L. Phys. Chem. Chem. Phys., 2008, 10 : 7278-7283

[91] Santos M, Marcalo J, Leal J P, de Matos A P, Gibson J K, Haire R G. Int. J. Mass Spectr., 2003, 228 : 457-465

[92] Gibson J K, Haire R G, Marcalo J, Santos M, de Matos A P, Leal J P. J. Nucl. Mat., 2005, 344 : 24-29

[93] Gibson J K, Haire R G, Santos M, Marcalo J, de Matos A P. J. Phys. Chem. A, 2005, 109 : 2768-2781

[94] Santos M, Marcalo J, de Matos A P, Gibson J K, Haire R G. J. Phys. Chem. A, 2002, 106 : 7190-7194

[95] Haire R G. J. Alloys Compd., 2007, 444/445 : 63-71

[96] (a) Malmqvist P A, Pierloot K, Shahi A R M, Cramer C J, Gagliardi L. J. Chem. Phys., 2008, 128 : art. no. 204109 ;(b) Shahi A R M, Cramer C J, Gagliardi L. Phys. Chem. Chem. Phys., 2009, 11 : 10964-10972

[97] Infante I, Kovacs A, La Macchia G, Shahi A R M, Gibson J K, Gagliardi L. J. Phys. Chem. A, 2010, 114: 6007-6015

[98] Kovács A, Konings R J M, Raab J, Gagliardi L. Phys. Chem. Chem. Phys., 2008, 10: 1114-1117

[99] Santos M, Marcalo J, Leal J P, de Matos A P, Gibson J K, Haire R G. Int. J. Mass Spectrom., 2003, 228: 457-465

[100] Smith P K, Peterson D E. J. Chem. Phys., 1970, 52: 4963-4972

[101] Pyykk P, Li J, Runeberg N. J. Phys. Chem., 1994, 98: 4809-4813

[102] Kutepov A L. J. Alloys Compd., 2007, 444/445: 174-176

[103] Cotton F A, Murillo C A, Walton R A. Multiple Bonds Between Metal Atoms, 3rd ed. New York: Springer Science, 2005

[104] Minasian S G, Krinsky J L, Rinehart J D, Copping R, Tyliszczak T, Janousch M, Shuh D K, Arnold J. J. Am. Chem. Soc., 2009, 131: 13767-13783

[105] Cadenbach T, Gemel C, Schmid R, Halbherr M, Ysenko K, Cokoja M, Fischer R D. Angew. Chem. Int. Ed., 2009, 48: 3872-3876

[106] Liddle S T, McMaster J, Mills D P, Blake A J, Jones C, Woodul W D. Angew. Chem. Int. Ed., 2009, 48: 1077-1080

[107] Gagliardi L, Roos B O. Nature, 2005, 433: 848-851

[108] Roos B O, Malmqvist P, Gagliardi L. J. Am. Chem. Soc., 2006, 128: 17000-17006

[109] Wu X, Lu X. J. Am. Chem. Soc., 2007, 129: 2171-2177

[110] Infante I, Gagliardi L, Scuseria G E. J. Am. Chem. Soc., 2008, 130: 7459-7465

[111] Srivastava D, Garg S P, Goswami G L. J. Nucl. Mater., 1989, 161: 44-56

[112] Streit M, Ingold F. J. Eur. Ceram. Soc., 2005, 25: 2687-2692

[113] Yeamans C B, Silva G W C, Cerefice G S, Czerwinski K R, Hartmann T, Burrell A K, Sattelberger A P. J. Nucl. Mater., 2008, 374: 75-78

[114] Thomson R K, Cantat T, Scott B L, Morris D E, Batista E R, Kiplinger J L. Nature Chem., 2010, 2: 723-729

[115] Shibata H, Tsuru T, Hirata M, Kaji Y. J. Nucl. Mater., 2010, 401: 113-117

[116] Takano M, Akabori M, Arai Y, Minato K. J. Nucl. Mater., 2008, 376: 114-118

[117] (a) Heyd J, Scuseria G E, Ernzerhof M. J. Chem. Phys., 2003, 118: 8207-8215; (b) Heyd J, Scuseria G E. J. Chem. Phys., 2004, 120: 7274-7280

[118] Lim I S, Scuseria G E. Chem. Phys. Lett., 2008, 460: 137-140

[119] Petit L, Svane A, Szotek Z, Temmerman W M, Stocks G M. Phys. Rev. B, 2009, 80: art. no. 045124

[120] Svane A. Phys. Rev. B, 1996, 53: 4275-4286

[121] Samsel-Czekala M, Talik E, de V Du Plessis P, Tro Dc' R, Misiorek H, Sulkowski C. Phys. Rev. B, 2007, 76: art. no. 144426

[122] (a) Skanthakumar S, Antonio M R, Wilson R E, Soderholm L. Inorg. Chem., 2007, 46: 3485-3491; (b) Lindqvist-Reis P, Apostolidis C, Rebizant J, Morgenstern A, Klenze R, Walter O, Fanghanel T, Haire R G. Angew. Chem. Int. Ed., 2007, 46: 919-922; (c) Soderholm L, Antonio M R. The Chemistry of the Actinide and Transactinide Elements, vols. 4 and 5, 3rd ed. (Eds. Moss L R, Edelstein N M, Fuger J, Katz J J), Dordrecht: Springer, 2006. 3086-3198

[123] Galbis E, Hernández-Cobos J, den Auwer C, Le Naour C, Guillaumont D, Simoni E, Pappalardo R R, Marcos E S. Angew. Chem. Int. Ed., 2010, 49: 3811-3815

[124] Wiebke J, Moritz A, Cao X, Dolg M. Phys. Chem. Chem. Phys., 2007, 9: 459-465

[125] Yang T, Bursten B E. Inorg. Chem., 2006, 45: 5291-5301

[126] Hagberg D, Bednarz E, Edelstein N M, Gagliardi L. J. Am. Chem. Soc., 2007, 129: 14136-14137

[127] Lindqvist-Reis P, Klenze R, Schubert G, Fanghnel T. J. Phys. Chem. B, 2005, 109: 3077-3083

[128] Hagberg D, Karlstrm G, Roos B O, Gagliardi L. J. Am. Chem. Soc., 2005, 127: 14250-14256

[129] Bertolus M, Defranceschi M. J. Phys. Chem. B, 2006, 110: 19226-19232

[130] Frick R J, Hofer T S, Pribil A B, Randolf B R, Rode B M. J. Phys. Chem. A, 2009, 113: 12496-12503

[131] Gutowski K E, Dixon D A. J. Phys. Chem. A, 2006, 110: 8840-8856

[132] Gibson H K, Haire R G, Santos G, Marcalo J, de Matos A P. J. Phys. Chem. A, 2005, 109: 2768-2781

[133] Bühl M, Kabrede H, Diss R, Wipff G. J. Am. Chem. Soc., 2006, 128: 6357-6368

[134] Vallet V, Wahlgren U, Schimmelpfennig B, Szabó Z, Grenthe I. J. Am. Chem. Soc., 2001, 123: 11999-12008

[135] Cao Z, Balasubramanian K. J. Chem. Phys., 2009, 131: art. no. 164504

[136] Whlin P, Danilo C, Vallet V, Réal F, Flament J P, Wahlgren U. J. Chem. Theory Comput., 2008, 4: 569-577

[137] Farkas I, Bányai I, Szabó Z, Wahlgren U, Grenthe I. Inorg. Chem., 2000, 39: 799-805

[138] Szabó Z, Aas W, Grenthe I. Inorg. Chem., 1997, 36: 5369-5375

[139] Réal F, Vallet V, Wahlgren U, Grenthe I. J. Am. Chem. Soc., 2008, 130: 11742-11751

[140] Bühl M, Schreckenbach G, Sieffert N, Wipff G. Inorg. Chem., 2009, 48: 9977-9979

[141] Ikeda-Ohno A, Tsushima S, Takao K, Rossberg A, Funke H, Scheinost A C, Bernhard G, Yaita T, Hennig C. Inorg. Chem., 2009, 48: 11779-11787

[142] Wiebke J, Weigand A, Weissmann D, Glorius M, Moll H, Bernhard G, Dolg M. Inorg. Chem., 2010, 49: 6428-6435

[143] Whlin P, Vallet V, Wahlgren U, Grenthe I. Inorg. Chem., 2009, 48: 11310-11313

[144] Rotzinger F P. J. Chem. Theory Comput., 2008, 4: 1654-1658

[145] Clark D L, Conradson S D, Donohoe R J, Keogh D W, Morris D E, Palmer P D, Rogers R D, Tait C D. Inorg. Chem., 1999, 38: 1456-1466

[146] Shamov G A, Schreckenbach G. J. Am. Chem. Soc., 2008, 130: 13735-13744

[147] Shamov G A, Schreckenbach G, Vo T N. Chem. Eur. J., 2007, 13: 4932-4947

[148] (a)Gaillard C, Chaumont A, Billard I, Hennig C, Ouadi A, Georg S, Wipff G. Inorg. Chem., 2010, 49: 6484-6494;(b) de Andrade J, Bes E S, Stassen H. J. Phys. Chem. B, 2002, 106: 3546-3548;(c) Canongia-Lopes J N, Padua A A H. J. Phys. Chem. B, 2004, 108: 16893-16898;(d) Guilbaud P, Wipff G. J. Mol. Struct. THEOCHEM, 1996, 366: 55-63; (e) Baaden M, Berny F, Madic C, Wipff G. J. Phys. Chem. A, 2000, 104: 7659-7671

[149] Haschke J M, Allen T H, Morales L A. Science, 2000, 287: 285-287

[150] Sundararajan M, Campbell A J, Hillier I H. J. Phys. Chem. A, 2008, 112: 4451-4457

[151] Renshaw J C, Butchins L J C, Livens F R, May I, Charnock J M, Lloyd J R. Environ. Sci. Technol., 2005, 39: 5657-5660

[152] Steele H, Taylor R. J. Inorg. Chem., 2007, 46: 6311-6318

[153] Krot N N, Grigoriev M S. Russ. Chem. Rev., 2004, 73: 89-100

[154] Privalov T, Macak P, Schimmelpfennig B, Fromager E, Grenthe I, Wahlgren U. J. Am. Chem. Soc., 2004, 126: 9801-9808

[155] Moskaleva L V, Matveev A V, Dengler J, Rsch N. Phys. Chem. Chem. Phys., 2006, 8: 3767-3773

[156] Keller C. Comprehensive Inorganic Chemistry, vol. 5 Actinides (Eds Bailar J C, Emeleus H J, Nyholm R, Trotman-Dickenson A F). Pergamon: Oxford, 1973. 219-276

[157] Morss L R. The Chemistry of the Actinide Elements, 2nd Ed. vol. 2 (Eds Katz J J, Seaborg G T, Morss L R) . London: Chapman and Hall, 1986. 1278-1360

[158] Korzhavyi P A, Vitos L, Andersson D A, Johansson B. Nature Materials, 2004, 3: 225-228

[159] Carroll J J, Haug K L, Weisshaar J C, Blomberg M R A, Siegbahn P E M, Svensson M J. Phys. Chem., 1995, 99: 13955-13969

[160] Roos B O, Lindh R, Cho H G, Andrews L. J. Phys. Chem. A, 2007, 111: 6420-6424

[161] Lyon J T, Andrews L, Malmqvist P , Roos B O, Yang T, Bursten B E. Inorg. Chem., 2007, 46: 4917-4925

[162] Andrews L, Cho H G. J. Phys. Chem. A, 2005, 109: 6796-6798

[163] Cho H G, Lyon J T, Andrews L. J. Phys. Chem. A, 2008, 112: 6902-6907

[164] Hammer B, Hansen L B, Nrskov J K. Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59: 7413-7421

[165] Moskaleva L V, Matveev A V, Krüger S, Rsch N. Chem. Eur. J., 2006, 12: 629-634

[166] Rai D. Radiochim. Acta, 1984, 35: 97-106

[167] Yahia A, Arnold P L, Love J B, Maron L. Chem. Eur. J., 2010, 16: 4881-4888

[168] Nagaishi R, Katsumura Y, Ishigure K, Aoyagi H, Yoshida Z, Kimura T. J. Photochem. Photobiol. A, 2002, 146: 157-161

[169] Kannan S, Vaughn A E, Weis E M, Barnes C L, Duval P B. J. Am. Chem. Soc., 2006, 128: 14024-14025

[170] Szabo Z, Grenthe I. Inorg. Chem., 2007, 46: 9372-9378

[171] Pierloot K, van-Besien E, van-Lenthe E, Baerends E J. J. Chem. Phys., 2007, 126: art. no. 194311

[172] Denning R G. J. Phys. Chem. A, 2007, 111: 4125-4143

[173] Tsushima S. Inorg. Chem., 2009, 48: 4856-4862

[174] Tsushima S, Wahlgren U, Grenthe I. J. Phys. Chem. A, 2006, 110: 9175-9182

[175] Whittemore D O, Langmuir D. J. Chem. Eng. Data, 1972, 17: 288-290

[176] Guillaumont R, Fanghnel T, Fuger J, Grenthe I, Neck V, Palmer D A, Rand M H. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, New York: Elsevier Science Publishing Co. Inc., 2003. vol. 5

[177] Newton T W. The Kinetics of the Oxidation-Reduction Reactions of Uranium, Neptunium, Plutonium and Americium in Aqueous Solution; Technical Information Center, Office of Public Affairs, U. S. Energy and Development Administration: Oak Ridge, TN, 1975

[178] Wahlgren U, Tsushima S, Grenthe I. J. Phys. Chem. A, 2006, 110: 9025-9027

[179] (a) Stubbert B D, Stern C L, Marks T J. Organometallics, 2003, 22: 4836-4838; (b) Stubbert B D, Marks T J. J. Am. Chem. Soc., 2007, 129: 4253-4271;( c) Stubbert B D, Marks T J. J. Am. Chem. Soc., 2007, 129: 6149-6167

[180] Tobisch S. Chem. Eur. J., 2010, 16: 3441-3458

[1] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[2] Qie Jia, Li Ming, Liu Li, Liang Yinghua, Cui Wenquan*. Research of Photocatalyst g-C3N4 Using First Principles [J]. Progress in Chemistry, 2016, 28(10): 1569-1577.
[3] Tian Zhimei, Liu Wangdan, Cheng Longjiu. Progress of the Experimental and Theoretical Studies on Aum(SR)n Clusters [J]. Progress in Chemistry, 2015, 27(12): 1743-1753.
[4] Liu Shaoming, Yu Bo, Zhang Wenqiang, Zhu Jianxin, Zhai Yuchun, Chen Jing. Atomic-Scale Insights into the Oxygen Ionic Transport Mechanisms of Oxygen Electrode in Solid Oxide Cells:A Review [J]. Progress in Chemistry, 2014, 26(09): 1570-1585.
[5] Shen Juan, Jin Bo, Jiang Qiying, Zhong Guoqing, Huo Jichuan. Computer Simulation Studies on Apatite Crystal and Its Interaction with Biologic Molecules [J]. Progress in Chemistry, 2012, 24(05): 737-746.
[6] Linfeng Rao. Application of Thermodynamic and Spectroscopic Techniques to the Studies of Actinide Complexation [J]. Progress in Chemistry, 2011, 23(7): 1295-1307.
[7] Yang Yanqiu, Luo Shunzhong, Yang Tongzai, Hao Fanhua. Calixarene Derivatives for An(Ⅲ)/Ln(Ⅲ) Separation in Nuclear Fuel Reprocessing [J]. Progress in Chemistry, 2011, 23(7): 1345-1354.
[8] Zhu Chongqiang Yang Chunhui Sun Liang. the Research of Point Defects in CdGeAs2 Nonlinear Optical Crystals [J]. Progress in Chemistry, 2010, 22(0203): 315-321.
[9] gepin yin pengjian zuo. Progress on First Principle Calculations of Cathode in Li-Ion Batteries [J]. Progress in Chemistry, 2008, 20(11): 1827-1833.
[10] Liu Wenjian**. New Advances in Relativistic Quantum Chemistry [J]. Progress in Chemistry, 2007, 19(06): 833-851.
[11] . Recent Progress in Density Functional Theory and Its Numerical Methods [J]. Progress in Chemistry, 2005, 17(02): 192-202.
[12] Dai Ying,Li Lemin. Applications of Density Functional Theory to Dealing with Excited States and Multiplets of Molecules [J]. Progress in Chemistry, 2001, 13(03): 167-.