中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (7): 1547-1557 Previous Articles   Next Articles

• Article •

Application of Radiation Technology in Environmental Protection

Wu Minghong*, Liu Ning, Xu Gang, Bu Tingting, He Yaqin, Wang Liang   

  1. Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
  • Received: Revised: Online: Published:
PDF ( 1746 ) Cited
Export

EndNote

Ris

BibTeX

The progress in the investigation of radiation technology applied in the environmental protection is reviewed. Radiation technology including electron beam and γ-ray irradiation has great potential in the field of environmental protection due to its special characteristics. The investigations and applications of radiation technology in the treatment of wastewater, waste gas and solid waste are introduced in this paper, including the treatment of printing and dyeing wastewater, papermaking wastewater, nitroanilines, halogenated flame retardants, endocrine disrupting chemicals, algal toxin, volatile organic contaminants and sludge etc and the removing of SOx and NOx in coal-fired and automobile exhaust. The degradation efficiency of these organic pollutants by electron beam or γ-ray radiolytic degradation is discussed in various conditions, such as different initial concentrations, irradiation doses, pH values, solvents, radiolysis systems and the addition of H2O2 etc. Besides, the radiolysis products of certain pollutants are listed and radiolytic degradation mechanisms of these organic pollutants are illustrated. These results demonstrated that radiation technology is an effective method to degrade the organic contaminants, especially the persistentorganic pollutants, OH and e-aq played significant roles in the radiolysis of organic pollutants. In addition, the limitations and the future tends of radiation technology applied in the environmental protection are also discussed.

Contents
1 Introduction
2 Applications of radiation technology in wastewater treatment
2.1 Printing and dyeing wastewater
2.2 Wastewater from papermill
2.3 Nitroanilines
2.4 Halogenated flame retardants
2.5 Endocrine disrupting chemicals
2.6 Algal toxin
3 Applications of radiation technology in waste gas treatment
3.1 Removal of sulfur dioxide and nitrogen oxides
3.2 Volatile organic contaminants
4 Applications of radiation technology in solid waste treatment
4.1 Sludge
4.2 Polymer solid waste
5 Conclusions and outlook

CLC Number: 


[1] 吴明红(Wu M H), 包伯荣(Bao B R). 辐射技术在环境保护中的应用(Application of Radiation Technology in Environmental Protection). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2002, 1-190

[2] Sakumoto A, Miyata T. Radiat. Phy. Chem., 1984, 24(1): 99-115

[3] Zhang S J, Yu H Q. Water Res., 2004, 38(2): 309-316

[4] Buxton G V, Greenstock C L, Helman W P, Ross A B. J. Phys. Chem. Ref. Data, 1988, (17): 513-886

[5] Craft T F, Eichholz G G. Int. J. Appl. Radiat. Isotopes, 1971, 22(9): 543-547

[6] Suzukia N, Miyataa T, Sakumotoa A, Hashimotoa S, Kawakami W. Int. J. Appl. Radiat. Isotopes, 1978, 29(2): 103-108

[7] Pikaev A K, Bludenko A V, Makarov I E, Ponomarev A V, Minin V N, Ponomarev V I, Linnik O A. Radiat. Phy. Chem., 1996, 48(1): 75-80

[8] 王敏(Wang M), 朱志远(Zhu Z Y), 杨睿媛(Yang R Y), 王文锋(Wang W F), 边绍伟(Bian S W), 沈忠群(Shen Z Q), 顾建忠(Gu J Z), 吴明红(Wu M H). 核技术(Nuclear Science and Technology), 2005, 28(1): 40-45

[9] Solpan D, Guven O. Radiat. Phy. Chem., 2002, 65(4/5): 549-558

[10] Solpan D, Guven O, Takacs E, Wojnarovits L, Dajka K. Radiat. Phy. Chem., 2003, 67(3/4): 531-534

[11] Zhang S J, Yu H Q, Li Q R. Chemosphere, 2005, 61(7): 1003-1011

[12] Chen Y P, Liu S Y, Yu H Q, Yin H, Li Q R. Chemosphere, 2008, 72(4): 532-536

[13] LaVerne J A, Tandon L, Knippel B C, Montoya V N. Radiat. Phy. Chem., 2005, 72(2/3): 143-147

[14] Wojnarovits L, Palfi T, Takacs E, Emmi S S. Radiat. Phy. Chem., 2005, 74(3/4): 239-246

[15] Ma H J, Wang M, Yang R Y, Wang W F, Zhao J, Shen Z Q, Yao S D. Chemosphere, 2007, 68(6): 1098-1104

[16] Rauf M A, Ashraf S S. J. Hazard. Mater., 2009, 166(1): 6-16

[17] Wang T Z, Waite T D, Charles K, Cooper W J. Water Res., 1994, 28(1): 237-241

[18] Lepine F L, Beaudoin J, Beaudet R. Environ. Appl. Ionzing Radiat., 1998, 467-476

[19] Taghipour F, Evans G J. Environ. Appl. Ionzing Radiat., 1998, 477-494

[20] 何仕均(He S J), 谢雷(XIe L), 王建龙(Wang J L), 李坤豪(Li S H), 龚文琪(Gong W Q). 清华大学学报(自然科学版) (Journal of Tsinghua University (Science and Technology)), 2008, 48(12): 2100-2102

[21] 胡俊(Hu J), 王建龙(Wang J L). 环境科学(Environmental Science), 2009, 10: 2936-2939

[22] 宋卫华(Song W H), 郑正(Zheng Z), 杭德生(Hang D S), 刘下国(Liu X G), 冯建(Feng J). 南京大学学报(自然科学) (Journal of Nanjing University (Science and Technology)), 2001, 37(6): 730-734

[23] Kimura A, Taguchi M, Kondoh T, Yang J F, Nagaishi R, Yoshida Y, Hirota K. Radiat. Phy. Chem., 2010, 79(11): 1159-1164

[24] Gonzalez-Juarez J C, Jimenez-Becerril J, Cejudo-Alvarez J. J. Mex. Chem. Soc., 2010, 54(3): 157-159

[25] Lacorte S, Viana P, Guillamon M, Tauler R, Vinhas T, Barcelo D. J. Environ. Monitor., 2001, 3(5): 475-482

[26] Schmelling D C, Gray K A, Kamat P V. Environ. Sci. Technol., 1998, 32(7): 971-974

[27] Lee B, Lee M. Environ. Sci. Technol., 2005, 39(23): 9278-9285

[28] 周涛(Zhou T), 郑正(Zheng Z), 孙权(Sun Q), 王红(Wang H), 利晓(Li X), 杨光俊(Yang G J). 环境科学技术(Environmental Science and Technology), 2003, 26(6): 15-17

[29] 边绍伟(Bian S W), 王敏(Wang M), 杨睿媛(Yang R Y), 王文锋(Wang W F). 辐射研究与辐射工艺学报(Journal of Radiation Research and Radiation Processing), 2005, 23(4): 211-215

[30] 边绍伟(Bian S W), 王敏(Wang M), 杨睿媛(Yang R Y), 王文锋(Wang W F), 沈忠群(Shen Z Q). 环境科学学报(Journal of Environmental Sciences), 2006, 26(1): 27-31

[31] Sanchez M, Wolfger H, Getoff N. Radiat. Phy. Chem., 2002, 65(6): 611-620

[32] Marin T W, Cline J A, Takahashi K, Bartels D M, Jonah C D. J. Phys. Chem. A, 2002, 106(51): 12270-12279

[33] Zhang S J, Jiang H, Li MJ, Yu H Q, Yin H, Li Q R. Environ. Sci. Technol., 2007, 41(6): 1977-1982

[34] Palfi T, Takacs E, Wojnarovits L. Water Res., 2007, 41(12): 2533-2540

[35] Yu S Q, Hu J, Wang J L. J. Hazard. Mater., 2010, 177(1/3): 1061-1067

[36] WHO. Environmental Health Criteria: Brominated Diphenyl Ethers. 1994: 162

[37] Singha A, Kremersa W, Smalleya P, Bennetta G S. Radiat. Phy. Chem., 1985, 25(1/3): 11-19

[38] Saway T, Shimokawa T, Shinozak Y B. Chem. Soc. Jpn., 1974, 47(8): 1889-1996

[39] Singh A, Kremers W, Smalley P, Bennett G S. Radiat. Phy. Chem., 1985, 25(1/3): 11-19

[40] Mincher B J, Meikrantz D H, Murphy R J, Gresham G L, Connolly M J. Int. J. Radiat. Applic. Instr. A., 1991, 42(11): 1061-1066

[41] Mincher B J, Arbon R E, Knighton W B, Meikrantz D H. Appl. Radiat. Isotopes, 1994, 45(8): 879-887

[42] AlSheikhly M, Silverman J, Neta P, Karam L. Environ. Sci. Technol., 1997, 31(9): 2473-2477

[43] Schmelling D C, Poster D L, Chaychian M, Neta P, Silverman J, Al-Sheikhly M. Environ. Sci. Technol., 1998, 32(2): 270-275

[44] Mincher B J, Brey R R, Rodriguez R G, Pristupa S, Ruhter A. Radiat. Phy. Chem., 2002, 65(4/5): 461-465

[45] Tang L A, Xu G, Wu W J, Shi W Y, Liu N, Bai Y L, Wu M H. Nucl. Sci. Tech., 2010, 21(2): 72-75

[46] Fox J E, Starcevic M, Kow K Y, Burow M E, McLachlan J A. Nature, 2001, 413(6852): 128-129

[47] Wu M H, Liu N, Xu G, Ma J, Tang L, Wang L, Fu H Y. Radiat. Phy. Chem., doi: 10.1016/j. radphyschem. 2010.10.008

[48] Kimura A, Taguchi M, Ohtani Y, Takigami M, Shimada Y, Kojima T, Hiratsuka H, Namba H. Radiat. Phy. Chem., 2006, 75(1): 61-69

[49] Mvula E, Schuchmann M N, von Sonntag C. J. Chem. Soc. Perk. T. 2, 2001, (3): 264-268

[50] Roder M, Wojn Da' rovits L, F ldi Da' K G. Radiat. Phys. Chem., 1990, 36: 175-173

[51] Kimura A, Taguchi M, Arai H, Hiratsuka H, Namba H, Kojima T. Radiat. Phy. Chem., 2004, 69(4): 295-301

[52] Kimura A, Taguchi M, Ohtani Y, Shimada Y, Hiratsuka H, Kojima T. Radiat. Phy. Chem., 2007, 76(4): 699-706

[53] Zhao C L, Hirota K, Taguchi M, Takigami M, Kojima T. Radiat. Phy. Chem., 2007, 76(1): 37-45

[54] Hitzfeld B C, Hger S J, Dietrich D R. Environ. Health Persp., 2000, 108 (Suppl. 1): 113-122

[55] Zhang J B, Zheng Z, Yang G J, Zhao Y F. Nucl. Instrum. Meth. A, 2007, 580(1): 687-689

[56] Song W H, Xu T L, Cooper W J, Dionysiou D D, De La Cruz A A, O'Shea K E. Environ. Sci. Technol., 2009, 43(5): 1487-1492

[57] Kawamura K, Shui VH. Radiat. Phy. Chem., 1984, 24(1): 117-127

[58] Persona J C, David O. Radiat. Phy. Chem., 1988, 31(1/3): 1-8

[59] Kikuchi R, Pelovski Y. Process Saf. Environ., 2009, 87(2): 135-143

[60] IAEA-TECDOC. Proceeding of a Technical meeting held in Sofia, Bulgaria, 2004, 1475

[61] Vitale S A, Hadidi K, Cohn D R, Bromberg L, Falkos P. Chemtech, 1996, 26(4): 58-63

[62] Penetrante B M, Hsiao M C, Bardsley J N, Merritt B T, Vogtlin G E, Wallman P H, Kuthi A, Burkhart C P, Bayless J R. Pure Appl. Chem., 1996, 68(5): 1083-1087

[63] Sun Y X, Hakoda T, Chmielewski A G, Hashimoto S, Zimek Z, Bulka S, Ostapczuk A, Nichipor H. Radiat. Phy. Chem., 2001, 62(4): 353-360

[64] Hakoda T, Zhang G, Hashimoto S. Radiat. Phy. Chem., 2001, 62(2/3): 243-252

[65] Han D H, Stuchinskaya T, Won Y S, Park W S, Lim J K. Radiat. Phy. Chem., 2003, 67(1): 51-60

[66] Hirota K, Hakoda T, Taguchi M, Takigami M, Kim H, Kojima T. Environ. Sci. Technol., 2003, 37(14): 3164-3170

[67] Fernandez-Martinez G, Lopez-Vilarino J M, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodriguez D, Abad E, Rivera J. Chemosphere, 2004, 57(1): 67-71

[68] Hakoda T, Matsumoto K, Mizuno A, Kojima T, Hirota K. Plasma Chem. Plasma P., 2008, 28(1): 25-37

[69] Hakoda T, Matsumoto K, Mizuno A, Hirota K. Appl. Catal. A-Gen., 2009, 357(2): 244-249

[70] Ostapczuk A, Hakoda T, Shimada A, Kojima T. Plasma Chem. Plasma P., 2008, 28(4): 483-494

[71] Son Y S, Kim K J, Kim J Y, Kim J C. Radiat. Phy. Chem., 2010, 79(12): 1270-1274

[72] Hakoda T, Shimada A, Kimura A, Taguchi M, Sugo Y, Arak K, Dally E B, Hirota K. Ind. Eng. Chem. Res., 2010, 49(12): 5517-5522

[73] 包伯荣(Bao B R), 吴明红(Wu M H), 罗文芸(Luo W Y), 周瑞敏(Zhou R M), 张仲燕(Zhang Z Y). 核技术(Nuclear Science and Technology), 1996, 12(19): 759-765

[74] Gautam S, Shah M R, Sabharwal S, Sharma A. Water Environ. Res., 2005, 77(5): 472-479

[75] Shani G, Segman-Magidovich S. J. Solid Waste Techn. Manage., 2009, 35(1): 17-25

[76] Burillo G, Clough R L, Czvikovszky T, Guven O, Le Moel A, Liu W W, Singh A, Yang J T, Zaharescu T. Radiat. Phy. Chem., 2002, 64(1): 41-51

[77] 覃柳莎(Tan L S), 赵素合(Zhao S H). 橡塑技术与装备(China Rubber/Plastics Technology and Equipment), 2007, 33(3): 22-26

[78] Getoff N. Radiat. Phys. Chem., 1991, 37(5): 673-680

[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[3] Hao Hu, Yunpeng He, Shuijin Yang. Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(6): 1026-1034.
[4] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.
[5] Xia Li, Hongyan Ma, Xiaojuan Nie, Xu Liu, Chengming Bian, Long Xie. Preparation of Star-Like Polymer Based on Cyclodextrin and Its Application [J]. Progress in Chemistry, 2020, 32(7): 935-942.
[6] Hongtao Yu, Shuo Chen, Xie Quan*, Zhenhua Zhang. The Mechanism, Materials and Reactors of Photocatalytic Disinfection in Water and Wastewater Treatment [J]. Progress in Chemistry, 2017, 29(9): 1030-1041.