中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (7): 1527-1533 Previous Articles   Next Articles

• Special issues •

Radioanalytical Methods in Nanotoxicology Studies

Zhang Zhiyong*, Zhao Yuliang, Chai Zhifang   

  1. Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
PDF ( 1327 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development of nanotechnology and its applications, the potential interactions of nanomaterials with living systems and the environment have attracted increasing attention from the public, as well as from manufacturers of nanomaterial-based products, academic researchers and policymakers. Nanotoxicology is emerging as an important subdiscipline of nanotechnology as well as toxicology. Nanotoxicology studies rely on many analytical methods for the characterization of nanomaterials and detection of nanomaterials in living systems. In this case, radioanalytical methods can play an important role due to their intrinsic merits such as high sensitivity, good accuracy, ability to distinguish the endogenous or exogenous sources of materials, and ability of in situ and in vivo analysis. This article reviews recent progress of applications of radioanalytical methods in nanotoxicology studies, and the emphasis is radiolabeling methods of nanomaterials.

Contents
1 Introduction
2 Chemical impurity analysis of carbon nanotubes using neutron activation analysis
3 Radiolabelling of nanomaterials for in vivo radiotracer studies
3.1 Radiolabeling of carbon nanomaterials
3.2 Radiolabeling of metallic and metal oxide nanomaterials
3.3 Radiolabeling of nanomedicines and other nanoparticles
4 Conclusions and outlook

CLC Number: 


[1] 赵宇亮(Zhao Y L), 柴之芳(Chai Z F). 纳米毒理学(Nanotoxicology). 北京: 科学出版社(Beijing: Sciennce Press), 2010. 1-10

[2] 张智勇(Zhang Z Y), 柴之芳(Chai Z F). 核化学与放射化学(J. Nucl. Radiochem. ), 2009, 31(S): 53-57

[3] Liu X, Guo L, Morris D, Kane A, Hurt R H. Carbon, 2008, 46: 489-500

[4] Braun T, Rausch H, Bíró L P, Konya Z, Kiricsi I. J. Radioanal. Nucl. Chem., 2004, 262: 31-34

[5] Decker J E, Walker A R H, Bosnick K, Clifford C A, Dai L, Fagan J, Hooker S, Jakubek Z J, Kingston C, Makar J, Mansfield E, Postek M T, Simard B, Sturgeon R, Wise S, Vladar A E, Yang L, Zeisler R. Metrologia, 2009, 46: 682-692

[6] Zeisler R, Paul R L, Oflaz S R, Yu LL, Mann J L, Kelly W R, Lang B E, Leigh S D, Fagan J. Anal. Bioanal. Chem., 2011, 399: 509-517

[7] Ge C C, Lao F, Li W, Li Y F, Chen, C C, Qiu Y, Mao X Y, Li B, Chai Z F, Zhao Y L. Anal. Chem., 2008, 80: 9426-9434

[8] Mortari S R, Cocco C R, Bartz F R, Dresssler V L, Flores E M. Anal. Chem., 2010, 82(10): 4298-4303.

[9] Yang K X, Kitto M E, Orsini J P, Swami K, Beach S E. J. Anal. At. Spectrom., 2010, 25: 1290-1297

[10] Zhang Z Y, Zhao Y L, Chai Z F. Chinese Sci. Bull., 2009, 54: 173-182

[11] Scrivens W A, Tour J M, Creek K E, Pirisi L. J. Am. Chem. Soc., 1994, 116: 4517-4518

[12] Chen J K, Shih M H, Peir J J, Liu C H, Chou F I, Lai W H, Chang L W, Lin P P, Wang M Y, Yang M H, Yang C S. Analyst, 2010, 135: 1742-1746

[13] Zhang Z Y, Wang X Y, Wu Y H, Liu Y F. J. Label. Compds. Radiopharm., 2000, 43 (1): 55-64

[14] Braun T, Rausch H. Carbon, 1998, 36: 1708-1709

[15] Abbas K, Cydzik I, Torchio R, Farina M, Forti E, Gibson N, Holzwarth U, Simonelli F, Kreyling W. J. Nanopart. Res., 2010, 12: 2435-2443

[16] Deng X, Jia G, Wang H F, Sun H, Wang X, Yang S, Wang T, Liu Y. Carbon, 2007, 45: 1419-1424

[17] Li Q N, Xiu Y, Zhang X D, et al. Chinese Sci. Bull., 2001, 46 (11): 1615-1618

[18] Petersen E J, Huang Q G, Weber Jr W J. Environ. Sci. Technol., 2008, 42 (8): 3090-3095

[19] Ferguson P L, Chandler G T, Templeton R C, DeMarco A, Scrivens W A, Englehart B A. Environ. Sci. Technol., 2008, 42(10): 3879-3885

[20] Georgin D, Czarny B, Botquin M, Mayne-L'hermite M, Pinault M, Bouchet-Fabre B, Carriere M, Poncy JL, Chau Q, Maximilien R, Dive V, Taran F. J. Am. Chem. Soc., 2009, 131(41): 14658-9.

[21] Masumoto K, Ohtsuki T, Sueki K, Kikuchi K, Mitsugashira T. J. Radioanal. Nucl. Chem., 1999, 239(1): 201-206

[22] Ohtsuki T, Masumoto K, Shikano K, Sueki K, Tanaka T, Komatsu K. Biol. Trace Elem. Res., 1999, 71/72: 489-498

[23] Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z, Liu Y, Zhao Y. J. Nanosci. Nanotechnol., 2004, 4(8): 1-6

[24] Li Y G, Zhang X D, Li Q N, Li W X. J. Radioanal. Nucl. Chem., 2001, 250: 363-364

[25] Ji Z Q, Sun H F, Wang H F, Xie Q Y, Liu Y F, Wang Z. J. Nanopart. Res., 2005, 8: 53-63

[26] Hong S Y, Tobias G, Al-Jamal K T, Ballesteros B, Ali-Boucetta H, Lozano-Perez S, Nellist P D, Sim R B, Finucane C, Mather S J, Green M L, Kostarelos K, Davis B G. Nat. Mater., 2010, 9(6): 485-490

[27] Ran T C, Liu R L, Yin J J, Zhu J H, Li W X, Li Q N. J. Radioanal. Nucl. Chem., 2006, 268(3): 599-603

[28] Nikoli Dc' N, Vranjes-Ethuri Dc' S, Jankovi Dc' D, Ethoki Dc' D, Mirkovi Dc' M, Bibi Dc' N, Trajkovi Dc' V. Nanotechnology. 2009, 20(38): art. no. 385102

[29] Li Q N, Xiu Y, Zhang X D, Liu R L, Du Q Q, Shun X G, Chen S L, Li W X. Nucl. Med. Biol., 2002, 29(6): 707-720

[30] Zhang X, Yin J, Kang C, Li J, Zhu Y, Li W, Huang Q, Zhu Z. Toxicol. Lett., 2010, 198(2): 237-243

[31] 李宇国(Li Y G), 李晴暖(Li Q N), 张勇平(Zhang Y P), 黄旋(Huang X), 李文新(Li W X). 核化学与放射化学(J. Nucl. Radiochem. ), 2002, 24: 161-163

[32] Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K. Proc. Natl. Acad. Sci. USA, 2006, 103(9): 3357-3362

[33] Liu Z, Cai W B, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H. . Nat. Nanotechnol., 2007, 2: 47-52

[34] Kikuchi K, Kobayashi K, Sueki K, Suzuki S, Nakahara H, Achiba Y, Tomura K, Katada M. J. Am. Chem. Soc., 1994, 116: 9775-9776

[35] Kobayashi K, Kuwano M, Sueki K, Kikuchi K, Achiba Y, Nakahara H, Kananishi N, Watanabe M, Tomura K. J. Radioanal. Nucl. Chem., 1995, 192: 81-89

[36] Cagle D W, Thrash T P, Abford M, Chibante L P F, Ehrhardt G J, Wilson L J. J. Am. Chem. Soc., 1996, 118: 8043-8047

[37] Cagle D W, Kennel S J, Mirzadeh S, Alford J M, Wilson L J. Proc. Natl. Acad. Sci. USA, 1999, 96: 5182-5187

[38] Braun T, Rausch H. Carbon, 1998, 36: 1708-1709

[39] Saha S K, Chowdhury D P, Das S K, Guin R. Nucl. Instr. Meth. B, 2006, 243: 277-281

[40] Shultz M D, Duchamp J C, Wilson J D, Shu C Y, Ge J, Zhang J, Gibson H W, Fillmore H L, Hirsch J I, Dorn H C, Fatouros P P. J. Am. Chem. Soc., 2010, 132(14): 4980-4981

[41] Kreyling W G, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdrster G, Ziesenis A. J. Toxicol. Environ. Health A, 2002, 65 (20): 1513-1530

[42] Lipka J, Semmler-Behnke M, Sperling R A, Wenk A, Takenaka S, Schleh C, Kissel T, Parak W J, Kreyling W G. Biomaterials, 2010, 31(25): 6574-6581

[43] Roy K, Lahiri S. Green Chem., 2006, 8: 1063-1066

[44] 范我(Fan W), 杨凯(Yang K), 钱建华(Qian J H), 朱然(Zhu R), 朱本兴(Zhu B X). 同位素(J. Isotopes), 2001, 14(1): 31-35

[45] 尹其华(Yin Q H), 刘璐(Liu L), 顾宁(Gu N), 黄鹰(Huang Y), 刘岚(Liu L), 宋进华(Song J H), 崔云(Cui Y). 医学研究生学报(J. Med. Postgrad. ), 2005, 18(4): 312-317

[46] Fu C M, Wang Y F, Chao Y C, Hung S H, Yang M D. IEEE T. Magn., 2004, 40(4): 3003-3005

[47] Oughton D H, Hertel-Aas T, Pellicer E M, Mendoza E, Joner E J. Environ. Toxicol. Chem., 2008, 27(9): 1883-1887

[48] Lu K, Zhang Z Y, He X, Ma Y H, Zhou K B, Zhang H F, Bai W, Ding Y Y, Wu Z Q, Zhao Y L, Chai Z F. J. Nanosci. Nanotechnol., 2010, 10: 8658-8662

[49] He X, Zhang H F, Ma Y H, Bai W, Zhang Z Y, Lu K, Ding Y Y, Zhao Y L, Chai Z F. Nanotechnology, 2010, 21(28): art. no. 285103

[50] Matson J B, Grubbs R H. J. Am. Chem. Soc., 2008, 130: 6731-6733

[51] Tsotsalas M M, Kopka K, Luppi G, Wagner S, Law M P, Schfers M, De Cola L. ACS Nano, 2010, 4(1): 342-348

[52] Reilly R M. J. Nucl. Med., 2007, 48(7): 1039-1042

[53] Shokeen M, Fetting N M, Rossin. Q. J. Nucl. Med. Mol. Imaging, 2008, 52: 267-277

[54] Muthu M S, Wilson B. Nanomedicine, 2010, 5(2): 169-171

[55] 诸颖(Zhu Y), 冉铁成(Ran T C), 李睛暖(Li Q N), 徐晶莹(Xu J Y), 李文新(Li W X). 核化学与放射化学(J. Nucl. Radiochem. ), 2009, 32(1): 1-7

[1] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[2] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[3] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[4] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[5] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[6] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[7] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[8] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[9] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[10] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[11] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[12] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.
[13] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.
[14] He Chen, Shuaiqi Zhang, Zhixue Zhao, Meng Liu, Qingrui Zhang. Application of Dopamine Functional Materials in Water Pollution Control [J]. Progress in Chemistry, 2019, 31(4): 571-579.
[15] Yang Shen, Jiwen Hu, Tingting Liu, Hongwen Gao, Zhangjun Hu. Colorimetric and Fluorogenic Chemosensors for Mercury Ion Based on Nanomaterials [J]. Progress in Chemistry, 2019, 31(4): 536-549.