中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (7): 1507-1519 Previous Articles   Next Articles

• Special issues •

Synthesis and Chemical Properties of Superheavy Elements

Qin Zhi*, Fan Fangli, Wu Xiaolei, Bai Jing, Ding Huajie, Lei Fuan, Tian Wei, Guo Junsheng   

  1. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received: Revised: Online: Published:
PDF ( 1712 ) Cited
Export

EndNote

Ris

BibTeX

Superheavy elements are those with high atomic number, beginning with element 104 (Rf). The research of superheavy elements is frontier topics in nuclear physics and nuclear chemistry. The present status of synthesis of superheavy elements is introduced, including the three synthesis methods——“hot fusion”, “cold-fusion” and “warm fusion” and the discovery of a new chemical element with atomic number Z=117. The current gas chemistry experimental studies of element 108 and element 112 are discussed in detail. And the prospects of the development of superheavy elements are also reviewed.

Contents
1 Introduction
2 Status of synthesis of superheavy elements
3 The influence of relativistic effects on superheavy elements
4 Chemical properties of superheavy elements
4.1 Element 108
4.2 Element 112
5 Status of the heavy elements in China
6 Conclusions and prospects

CLC Number: 


[1] Fricke B, Greiner W. Phys. Lett., 1969, 30B: 317-319

[2] Schädel M. Angew. Chem. Int. Ed., 2006, 45: 368-401

[3] Gäaggeler H W. Eur. Phys. J. A, 2005, 25(s01): 583-587

[4] Schädel M. Eur. Phys. J. D, 2007, 45: 67-74

[5] Guseva L I. Russian Chemical Reviews, 2005, 74: 443-459

[6] Nagame Y, Haba H, Tsukada K, et al., Nuclear Physics 2004, A734: 124-135

[7] Schädel M. J. Nucl. Radiochem. Sci., 2002, 3: 113-120

[8] Backe H, Heβberger F P, Sewtz M, et al., Eur. Phys. J. D, 2007, 45: 3-15

[9] Ackermann D. Nucl. Instrum. Methods Phys. Res. Sect. A, 2010, 613: 371-377

[10] Morita K. Progress in Particle and Nuclear Physics 2009, 62: 325-336

[11] Hofmann S. Progress in Particle and Nuclear Physics 2009, 62: 337-343

[12] Morita K. Nuclear Physics A, 2010, 834: 338c-344c

[13] Oganessian Y. J. Phys. G. 2007, 34: R165-R242

[14] Zvara I, Chuburkov Yu T, Tsalctka R, et al. Radiokhimiya, 1969, 11: 163 (in Russian)

[15] Zvara I, Chuburkov Yu T, Belov V Z, et al. J. Inorg. Nucl. Chem., 1970, 21: 1885

[16] Ghiorso A, Nurmia M, Harris J, et al. Phys. Rev. Lett., 1969, 22: 1317-1320

[17] Ghiorso A, Nurmia M, Eskola K, et al. Phys. Rev. Lett., 1970, 24: 1498-1503

[18] Druin V A, Demin A G, Kharitonov Yu P, et al. Yad. Fiz., 1971, 13: 251-255

[19] Ghiorso A, Nitschke M, Alonso J R, et al. Phys. Rev. Lett., 1974, 33: 1490-1493

[20] Münzenberg G, Hofmann S, Heberger F P, et al Z. Phys. A, 1981, 300: 107-108

[21] Münzenberg G, Armbruster P, Folger H, et al. Z. Phys. A, 1984, 317: 235-236

[22] Münzenberg G, Armbruster P, Heberger F P, et al. Z. Phys. A, 1992, 309: 89-90

[23] Hofmann S, Ninov V, Heberger F P, et al. Z. Phys. A, 1995, 350: 277-280

[24] Lazarev Y A. JINR report, 1996, JINR-E7-96-82

[25] Hofmann S, Ninov V, Heberger F P, et al. Z. Phys. A, 1995, 350: 281-283

[26] Hofmann S, Ninov V, Heberger F P, et al. Z. Phys., A, 1996, 354: 229-230

[27] Oganessian Y, Utyonkoy V K, Lobanov Y V, et al. Phys. Rev. C, 2004, 69: art. No. 021601

[28] Morita K, Morimoto K, Kaji D, et al. J. Phys. Soc. Jpn., 2004, 73: 2593-2596

[29] Oganessian Y T, Yeremin A V, Popeko A G, et al. Nature, 1999, 400: 242-245

[30] Oganessian Y T, Utyonkov V K, Lobanov Y V, et al. Phys. Rev. C, 2000, 63: art. no. 011301

[31] Oganessian Y T, Abdullin F Sh, Bailey P D, et al. Phys. Rev. Lett., 2010, 104: art. no. 142502

[32] Oganessian Y T, Utyonkov V K, Lobanov Y V, et al. Phys. Rev. C, 2006, 74: art. no. 044602

[33] 秦芝(Qin Z), 范芳丽(Fan F L), 林茂盛(Lin M S)等. 核化学与放射化学(J. Nucl. and Radiochem. ), 2009, 31(Suppl. ): 1-15

[34] Oganessian Y T, Utyonkov V K, Lobanov Y V, et al. Phys. Rev. Lett., 1999, 83: 3154-3157

[35] Oganessian Y T, Utyonkov V K, Lobanov Y V, et al, Phys. Rev. C, 2000. 62: art. no. 041604

[36] Oganessian Y T, Utyonkov V K, Lobanov Y V, et al. Phys. Rev. C, 2004, 70: art. no. 064609

[37] Düllmann C E, Schädel M, Yakushev A, et al. Phys. Rev. Lett., 2010, 104: art. no. 252701

[38] Ellison P A, Gregorich K E, Berryman J S, et al. Phys. Rev. Lett., 2010: 105: art. no. 182701

[39] Oganessian Y T, Utyonkov V K, Lobanov Y V, et al, Phys. Rev. C, 2004, 69: art. no. 054607

[40] Sobiczewski A. Acta Phys. Pol. B, 2010, 41: 157-164

[41] Pershina V, Fricke B. in Heavy Elements and Related New Phenomena (Eds.: Greiner W, Gupta R K), Singapore: World Scientific, 1999, 194-262

[42] Kratz J V, Zimmermann H P, Scherer U W, et al. Radiochim. Acta, 1989, 48: 121-133

[43] Zimmermann H P, Gober M K, Kratz J V, et al. Radiochim. Acta, 1993, 60: 11-16

[44] Paulus W, Kratz J V, Strub E, et al. Radiochim. Acta, 1999, 84: 69-77

[45] Pershina V. Radiochim. Acta, 1998, 80: 75-84

[46] Pershina V, Bastug T. Radiochim. Acta, 1999, 84: 79-84

[47] Pershina V, Fricke B. J. Phys. Chem., 1996, 100: 8748-8751

[48] Türler A, Brüchle W, Dressler R, et al. Angew. Chem. Int. Ed., 1999, 38: 2212-2213

[49] Eichler R, Brüchle W, Dressler R, et al. Nature, 2000, 407: 63-65

[50] Pershina V, Bastug T., J. Chem. Phys., 2000, 113: 1441-1446

[51] Düllmann C, Brüchle W, Dressler R, et al. Nature, 2002, 418: 859-862

[52] Pershina V, Anton J, Jacob T. Phys. Rev. A, 2008, 78: art. no. 032518

[53] Pershina V. in The Chemistry of Superheavy Elements (Ed.: Schdel M), Dordrecht: Kluwer Academic Publishers, 2003, pp. 31-94

[54] Pershina V. in Relativistic Electronic Structure Theory. Part 2. Applications, Theoretical and Computational Chemistry, vol. 14 (Ed.: Schwerdtfeger P), Amsterdam: Elsevier, Amsterdam, 2004, 1-80

[55] Pershina V, Hoffman D C. in Theoretical Chemistry and Physics of Heavy and Superheavy Elements (Eds.: Kaldor U, Wilson S), Dordrecht: Kluwer Academic Publishers, 2003, pp. 55-114

[56] Haffman D C. Rdiochim. Acta, 1993, 61: 123-128

[57] Guillaumont R, Adloff J P A. Rdiochim. Acta, 1989, 46: 169-176

[58] Leino M. Nucl. Instr. and Meth. B, 2003, 204: 129-137

[59] Ninov V, Gregorich K E. in ENAM98 (Eds. Sherrill B M, Morrissey D J, Davids C N), AIP, Woodbury, 1999, 704

[60] Semchenkov A, Brüchle W, Jüger E, et al., Nucl. Instr. and Meth. B, 2008, 266: 4153-4161

[61] Morita K, Morimoto K, Kaji D, et al, Eur. Phys. J. A, 2004, 21: 257-263

[62] Oganessian Y T, Kliman J, Gmuca , et al. Proceedings of Fourth International Conference on Dynamical Aspects of Nuclear Fission, 1998,

[63] Gäggeler H W, Jost D T, Baltensperger U, et al. Nucl. Instr. and Meth. A, 1991, 309: 201-208

[64] Türler A. Radiochim. Acta, 1996, 72: 7-17

[65] Kadkhodayan B, Türler A, Gregorich K E, et al. Radiochim. Acta, 1996, 72: 169-178

[66] Türler A, Gäggeler H W, Gregorich K E, et al. J. Radioanal. Nucl. Chem., 1992, 160: 327-339

[67] Sylwester E R, Gregorich K E, Lee M D, et al. Radiochim. Acta, 2000, 88: 837-844

[68] Gäggeler H W, Jost D, Kovacs J, et al. Radiochim. Acta, 1992, 57: 93-100

[69] Zvara I, Yakushev A B, Timokhin S N, et al. Radiochim. Acta, 1998, 81: 179-187

[70] Schädel M, Brüchle W, Dressler R, et al. Nature, 1997, 388: 55-57

[71] Eichler R, Brüchle W, Dressler R, et al. Nature, 2000, 407: 63-65

[72] Düllmanna C E, Eichler B, Eichler R, et al. Nucl. Instr. & Meth. in Phys. Res. A, 2002, 479: 631-639

[73] Hofmann S, Ninov V, Heβberger F P, et al. Z. Phys. A, 1996, 354: 229-230

[74] Schädel M. Hofmann S. J. Radioanal. Nucl. Chem., 1996, 203: 283-300

[75] Dvorak J, Brüchle W, Chelnokov M, et al. Phys. Rev. Lett., 2006, 97: art. no. 242501

[76] Dvorak J, Brüchle W, Chelnokov M, et al. Phys. Rev. Lett., 2008, 100: art. no. 132503

[77] von Zweidorf A, Angert R, Brüchle W, et al. Radiochim. Acta, 2004, 92: 855-861

[78] von Zweidorf A. Angert R, Brüchle W, et al. GSI Scientific Report, 2002, 176-176

[79] Gmelins Handbuch der Anorganischen Chemie. 8. Aufiage, Osmium mit einem Anhang über Ekaosmium, System-Nummer 66, Verlag Chemie GmbH, Berlin, 1939, 33.

[80] Samadani F, Alstad J, Bjrnstad T, et al. Radiochim. Acta, 2010, 98: 757-764

[81] Eichler B. Kernenergie , 1976, 19: 307-311

[82] Fricke B. Structure Bonding, 1975, 21: 90-144

[83] Pyykk P, Desclaux J P. Acc. Chem. Res., 1979, 12: 276-281

[84] Schwerdtfeger P, Seth M. Encyclopaedia of Computational Chemistry Vol. 4, New York: Wiley, 1998, 2480-2499

[85] Pitzer K S. J. Chem. Phys., 1975, 63: 1032-1333

[86] Gaston N, Opahle I, Gäggeler H W, et al. Angew. Chem. Int. Ed, 2007, 46 (14): 2444-2447

[87] Yakushev A B, Buklanov G V, Chelnokov M L, et al. Radiochim. Acta, 2001, 89: 743-745

[88] Yakushev A B, Zvara I, Oganessian Y T, et al. Radiochim. Acta, 2003, 91: 433-440

[89] Yakushev A B, Zvara I, Oganessian Y T, et al. Nucl. Phys. A, 2004, 734: 204-207

[90] Eichler R, Brüchle W, Buda R, et al. Radiochim. Acta, 2006, 94: 181-191

[91] Gäggeler H W, Brüchle W, Düllmann C E, et al. . Nucl. Phys. A, 2004, 734: 208-212

[92] Eichler R, Aksenov N V, Belozerov A V, et al. Nature, 2007, 447: 72-75

[93] Oganessian Y T, Yeremin A V, Popeko A G, et al. Eur. Phys. J. A, 2004, 19: 3-6

[94] Eichler R, Aksenov N V, Albin Yu V, et al. Radiochim. Acta, 2010, 98: 133-139

[95] Wittwer D, Abdullin F Sh, Aksenov N V, et al. Nucl. Instr. & Meth. in Phys. Res. B, 2010, 268: 28-35

[96] Gan Z G, Qin Z, Fan H M, et al. Eur. Phys. J. A, 2001, 10: 21-25

[97] Gan Z G, Guo J S, Wu X L, et al. Eur. Phys. J. A, 2004, 20: 385-387

[98] Lin M S, Qin Z, Lei F A, et al., Radiochimica Acta, 2010, 98: 321-326

[99] Fan F L, Lei F A, Zhang L N, et al. Solvent Extraction and Ion Exchange, 2009, 27: 395-407

[100] Fan F L, Lei F A, Zhang L N, et al. Radiochimica Acta, 2009, 97(6): 297-302

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[13] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.