中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (7): 1478-1484 Previous Articles   Next Articles

• Special issues •

A Preview of Nano-Materials and Nano-Technologies Applied in Advanced Nuclear Energy System

Shi Weiqun*, Zhao Yuliang, Chai Zhifang   

  1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
PDF ( 2138 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid growth of human demands for nuclear energy, in response to the challenges of nuclear energy development, the world's major nuclear countries have started the R&D of advanced nuclear energy systems, in which new materials and new technologies are considered to play important roles. Nano-materials and nano-technologies, which have gain extensive attention in recent years, have shown a wide range of potential applications in future nuclear energy system. In this paper, the basic research progress of nano-materials and nano-technologies in advanced nuclear fuel fabrication, spent nuclear fuel reprocessing, nuclear waste disposal and nuclear environmental restoration was reviewed. Furthermore, the R&D trends of nano-materials and nano-technologies in future advanced nuclear energy system are discussed.

Contents
1 Introduction
2 The applications of nano-materials and nano-technologies in advanced nuclear fuel fabrication
3 The applications of nano-materials and nano-technologies in advanced nuclear fuel reprocessing
4 The applications of nano-materials and nano-technologies in nuclear waste disposal and management
5 The applications of nano-materials and nano-technologies in recognition and detection of radionuclides
6 Conclusions and outlook

CLC Number: 


[1] Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, U. S. Department of Energy, October, 2006

[2] http: //www. iaea. org/programmes/a2/

[3] Hill D J. Nature Mater., 2008, 7: 680-682

[4] Currall S C, King E B, Lane N, Madera J, Turner S. Nature Nanotech., 2006, 1: 153-155

[5] Wu C. Nature., 2010, 468: 589-590

[6] Wu H M, Yang Y G, Charles Cao Y. J. Am. Chem. Soc., 2006, 128: 16522-16523

[7] Burns P C, Kubatko K N, Sigmon G, Fryer B J, Gagnon J E, Antonio M R, Soderholm L. Angew. Chem. Int. Ed., 2005, 44: 2135-2139

[8] Sigmon G E, Ling J, Unruh D K, Moore Shay L, Ward M, Weaver B, and Burns P C. J. Am. Chem. Soc., 2009, 131: 16648-16649

[9] Sigmon G E, Weaver B, Kubatko K A, Burns P C. Inorg. Chem., 2009, 48(23): 10907-10909

[10] Forbes T Z, Gregory Mc Alpin J, Murphy R, Burns P C. Angew. Chem. Int. Ed., 2008, 47: 2824-2827

[11] Mir P, Pierrefixe S, Gicquel M, Gil A, Bo C. J. Am. Chem. Soc., 2010, 132: 17787-17794

[12] Diederich F, Thilgen C. Science, 1996, 271: 317-323

[13] Krasheninnikov AV, Banhart F. Nature Mater., 2007, 6: 723-733

[14] Bethune D S, JohnsonR D, SalemJ R, Devries M S, Yannoni C S. Nature, 1993, 366: 123-128

[15] Guo T, Diener M D, Chai Y, Alford M J, Haufler R E, McClure S M, Ohno T, Weaver J H, Scuseria G E, Smalley R E. Science, 1992, 257: 1661-1664

[16] Diener M D, Smith C A, Veirs D K. Chem. Mater., 1997, 9: 1773-1777

[17] Akiyama K, Zhao Y L, Sueki K, Tsukada K, Haba H, Nagame Y, Kodama T, Suzuki S, Ohtsuki T, Sakaguchi M, Kikuchi K, Katada M, Nakahara H. J. Am. Chem. Soc., 2001, 123: 181-182

[18] Wu X, Lu X. J. Am. Chem. Soc., 2007, 129: 2171-2177

[19] Infante I, Gagliardi L, Scuseria G E. J. Am. Chem. Soc., 2008, 130: 7459-7465

[20] Kurina I S, Popov V V, Rumyantsev V N. Atomi. Energ., 2006, 101: 802-808

[21] Yildiz O. J. Nucl. Mater., 2007, 366: 266-271

[22] Bhide M K, Kadam R M, Tyagi A K, Muthe K P, Salunke H G, Gupta S K, Vinu A, Asthana A, Godbole S V. J. Mater. Res., 2008, 23: 463-472

[23] Devaux X, Thomy A, Ghanbaja J. J. Mater. Sci., 1997, 32: 4957-4965

[24] Wang L, Yang Z M, Gao J H, Xu K M, Gu H W, Zhang B, Zhang X X, Xu B. J. Am. Chem. Soc., 2006, 128: 13358-13359

[25] Han H, Johnson A, Kaczor J, Kaur M, Paszczynski A, Qiang Y. J. Appl. Phys., 2010, 107: 09B520

[26] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chem. Rev., 2006, 106: 1105-1136

[27] Belloni F, Kutahyali C, Rondinella V, Carbol P, Wiss T, Mangione A. Environ. Sci. Technol., 2009, 43: 1250-1255

[28] Wang X K, Chen C L, Hu W P, Ding A, Xu D, Zhou X. Environ. Sci. Technol., 2005, 39: 2856-2860

[29] Chen C L, Li X, Zhao D, Tan X L, Wang X K. Colloids Sur. A, 2007, 302: 449-454

[30] Tan X L, Xu D, Chen C L, Wang X K, Hu W P. Radiochim. Acta, 2008, 96: 23-29

[31] Shao D D, Jiang Z Q, Wang X K, Li J X, Meng Y D. J. Phys. Chem. B, 2009, 133: 860-864

[32] Chen C L, Liang B, Ogino A, Wang X K, Nagatsu M. J. Phys. Chem. C, 2009, 113: 7659-7665

[33] Kumar P, Guliants V V. Micropor. Mesopor. Mater., 2010, 132: 1-14

[34] Ros-Lis J V, Casasus R, Comes M, Coll C, Marcos M D, Martinez-Manez R, Sancenon F, Soto J, Amoros P, El Haskouri J, Garro N, Rurack K. Chem-A Euro. J., 2008, 14: 8267-8963

[35] Moller K, Bein T. Chem. Mater., 1998, 10: 2950-2963

[36] Vidya K, Dapurkar S E, Selvam P, Badamal S K, Gupta N M. Micropor. Mesopor. Mater., 2001, 50: 173-179

[37] Vidya K, Gupta N M, Selvama P. Mater. Res. Bullet., 2004, 39: 2035-2048

[38] Kumar D, Bera S, Tripathi A K, Dey G K, Gupta N M. Micropor. Mesopor. Mater., 2003, 66: 157-167

[39] Krishna V, Kamble V S, Gupta N M, Selvam P. J. Phys. Chem. C, 2008, 112: 15832-15843

[40] Dyer A, Newton J, Pillinger M. Micropor. Mesopor. Mater., 2010, 130: 56-62

[41] Dyer A, Harjula R, Newton J, Pillinger M. Micropor. Mesopor. Mater., 2010, 130: 63-66

[42] Yousefi S R, Ahmadi S J, Shemirani F, Jamali M R, Salavati-Niasari M. Talanta, 2009, 80: 212-217

[43] Lee H L K, Kim J H, Kim J M, Kim S, Park J N, Hwang J S, Yeon J W, Jung Y J. J. Nanosci. Nanotechnol, 2010, 10: 217-221

[44] Birnbaum J C, Busche B, Lin Y H, Shaw W J, Fryxell G E. Chem. Commun., 2002, 1374-1375

[45] Lin Y H, Fiskum S K, Yantasee W, Wu H, Mattigod S V, Vorpagel E, Fryxell G E. Environ. Sci. Technol., 2005, 39: 1332-1337

[46] Fryxell G E, Lin Y H, Fiskum S, Birnbaum J C, Wu H. Environ. Sci. Technol., 2005, 39: 1324- 1331

[47] Fryxell G E, Mattigod S V, Lin Y H, Wu H, Fiskum S, Parker K, Zheng F, Yantasee W, Zemanian T S, Addleman T S, Liu J, Kemner K, Kelly S, Feng X D. J. Mater. Chem., 2007, 17: 2863-2874

[48] Krivovichev S V, Burns P C, Tananaev I G, Myasoedov B F. J. Alloy. Compound., 2007, 444: 457-463

[49] Lin C H, Chiang R K, Lii K H. J. Am. Chem. Soc., 2009, 131: 2068-2069

[50] Alekseev E V, Krivovichev S V, Depmeier W, Siidra O I, Knorr K, Suleimanov E V, Chuprunov E V. Angew. Chem. Int. Ed., 2006, 45: 7233-7235

[51] Krivovichev S V, Kahlenberg V, Kaindl R, Mersdorf E, Tananaev I G, Myasoedov B F. Angew. Chem. Int. Ed., 2005, 44: 1134-1136

[52] Albrecht-Schmitt T E. Angew. Chem. Int. Ed., 2005, 44: 4836-4838

[53] Rosseinsky M J. Nature Mater., 2010, 9: 609-610

[54] Walker S M, Shiv Halasyamani P, Allen S, OHare D. J. Am. Chem. Soc., 1999, 121: 10513-10521

[55] Halasyamani P S, Walker S M, OHare D. J. Am. Chem. Soc., 1999, 121: 7415-7416

[56] Kim J Y, Norquist A J, OHare D. J. Am. Chem. Soc., 2003, 125, 12688-12689

[57] Ok K M, Sung J, Hu G, Jacobs R M J, OHare D. J. Am. Chem. Soc., 2008, 130: 3762-3763

[58] Suzuki Y, Kelly S D, Kemner K M, Banfield J F. Nature, 2002, 419: 134-134

[59] Lee J H, Wang Z D, Liu J W, Lu Y. J. Am. Chem. Soc., 2008, 130: 14217-14226

[1] Gu Zhongmao, Chai Zhifang. Some Thinking of Nuclear Fuel Reprocessing/Recycling in China [J]. Progress in Chemistry, 2011, 23(7): 1263-1271.
[2] Wei Yuezhou. Progress and Discussion on Chemical Separation Technologies for Nuclear Fuel Reprocessing Abroad [J]. Progress in Chemistry, 2011, 23(7): 1272-1288.
[3] Zhu Liyang, Wen Mingfen, Duan Wuhua, Xu Jingming, Zhu Yongjun. Application of Supercritical Fluid Extraction in Reprocessing of Spent Nuclear Fuel [J]. Progress in Chemistry, 2011, 23(7): 1308-1315.
[4] Zhang Anyun, Xiao Chengliang, Chai Zhifang. Development of Silica-Based Supramolecular Recognition Materials in Reprocessing of Nuclear Spent Fuel [J]. Progress in Chemistry, 2011, 23(7): 1355-1365.
[5] Daqing Cui. A Review of Beneficial Effects of Ruducing Environment at the Near-field of KBS-3 Repository [J]. Progress in Chemistry, 2011, 23(7): 1411-1428.