中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (7): 1469-1477 Previous Articles   Next Articles

• Special issues •

Radiation Effects on Imidazolium Ionic Liquids and Their Extraction Systems

Yuan Liyong1,2, Peng Jing1, Zhai Maolin1,*   

  1. 1. Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
    2. Key Lab. of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
PDF ( 1035 ) Cited
Export

EndNote

Ris

BibTeX

Room-temperature ionic liquids (RTILs), especially those containing imidazolium cations, for instance 1,3-dialkylimidazolium, associated with various inorganic anions are receiving an ever-increasing amount of interest as environmentally benign alternatives to volatile organic solvents for traditional liquid-liquid extraction of high level radioactive nuclides in nuclear fuel reprocessing, because of their low volatility, good thermal and chemical stability, as well as excellent extraction capacity. The application of RTILs in nuclear fuel reprocessing, however, requires a comprehensive knowledge of radiation effects on RTILs and their extraction systems. Herein, we reviewed our recent investigations of γ-radiation effects on two widely used hydrophobic RTILs X and X-based extraction systems, where + is 1-butyl-3-methylimidazolium and X is hexafluorophosphate (PF-6) and bis(trifluoromethylsulfonyl)imide ( -), respectively. The investigations involved radiation effects on chemical structure and some properties, especially phase behavior and fluorescence properties of neat RTILs under nitrogen atmosphere and of RTILs in the presence of nitric acid, separation and analysis of radiolytic products of RTILs, and influence of γ-irradiation on RTILs-based extraction systems during extraction of metal ions. Based on the results, the feasibility of RTILs as alternative media for the separations of high level radioactive nuclides from spent nuclear fuel was evaluated, and further studies on the radiation effects on RTILs and RTILs-based extraction system are prospected.

CLC Number: 


[1] Allen D, Baston G, Bradley A E, Gorman T, Haile A, Hamblett I, Hatter J E, Healey M J F, Hodgson B, Lewin R, Lovell K V, Newton B, Pitner W R, Rooney D W, Sanders D, Seddon K R, Sims H E, Thied R C. Green Chem., 2002, 4: 152-158

[2] Berthon L, Nikitenko S I, Bisel I, Berthon C, Faucon M, Saucerotte B, Zorz N, Moisy P. Dalton Trans., 2006: 2526-2534

[3] Bosse E, Berthon L, Zorz N, Monget J, Berthon C, Bisel I, Legand S, Moisy P. Dalton Trans., 2008: 924-931

[4] Qi M Y, Wu G Z, Chen S M, Liu Y D. Radiat. Res., 2007, 167: 508-514

[5] Qi M Y, Wu G Z, Li Q M, Luo Y S. Radiat. Phys. Chem., 2008, 77: 877-883

[6] Tarábek P, Liu S, Haygarth K, Bartels D M. Radiat. Phys. Chem., 2009, 78: 168-172

[7] Shkrob I A, Chemerisov S D, Wishart J F. J. Phys. Chem. B, 2007, 111: 11786-11793

[8] Le Rouzo G, Lamouroux C, Dauvois V, Dannoux A, Legand S, Durand D, Moisy P, Moutiers G. Dalton Trans., 2009: 6175-6184

[9] Yuan L Y, Peng J, Xu L, Zhai M L, Li J Q, Wei G S. Dalton Trans., 2008: 6358-6360

[10] Yuan L Y, Peng J, Xu L, Zhai M L, Li J Q, Wei G S. J. Phys. Chem. B, 2009, 113: 8948-8952

[11] Tao G H, Zou M, Wang X H, Chen Z Y, Evans D G, Kou Y. Aust. J. Chem., 2005, 58: 327-331

[12] Yuan L Y, Peng J, Zhai M L, Li J Q, Wei G S. Radiat. Phys. Chem., 2009, 78: 1133-1136

[13] Paul A, Mandal P K, Samanta A. Chem. Phys. Lett., 2005, 402: 375-379

[14] 袁立永(Yuan L Y), 彭静(Peng J), 李久强(Li J Q), 翟茂林(Zhai M L). 物理化学学报(Acta Physico-Chimica Sinica), 2010, 26: 981-987

[15] Yuan L Y, Peng J, Zhai M L, Li J Q, Wei G S. Radiat. Phys. Chem., 2009, 78: 737-739

[16] Yang Y L, Kou Y. Chem. Commun., 2004, 226-227

[17] Dai S, Ju Y H, Barnes C E. J. Chem. Soc. Dalton Trans., 1999: 1201-1202

[18] Yuan L Y, Xu C, Peng j, Xu L, Zhai M L, Li J Q, Wei G S, Shen X H. Dalton Trans., 2009, 7873-7875

[19] Visser A E, Swatloski R P, Reichert W M, Griffin S T, Rogers R D. Ind. Eng. Chem. Res., 2000, 39: 3596-3604

[20] Dietz M L, Stepinski D C. Green Chem., 2005, 7: 747-750

[21] Xu C, Yuan L Y, Shen X H, Zhai M L. Dalton Trans., 2010, 39: 3897-3902

[1] Bo Li, Lijian Ma, Ning Luo, Shoujian Li, Yunming Chen, Jinsong Zhang. Extraction and Separation of Uranium via Solid Phase Extraction [J]. Progress in Chemistry, 2020, 32(9): 1316-1333.
[2] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[3] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[4] Yaoyang Liu, Zhibin Liu, Chuang Zhao, Yu Zhou, Yang Gao, Hui He. Separation of Actinides: Extraction Chemistry and Application of Unsymmetric Diglycolamides [J]. Progress in Chemistry, 2020, 32(2/3): 219-229.
[5] Fengguo Liu, Bo Wang, Lianyu Zhang, Aimin Liu, Zhaowen Wang, Zhongning Shi. Application of Ionic Liquids in Aluminum and Alloy Electrodeposition [J]. Progress in Chemistry, 2020, 32(12): 2004-2012.
[6] Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li, Shouxin Liu. Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids [J]. Progress in Chemistry, 2019, 31(8): 1136-1147.
[7] Zhiyong Li, Ying Feng, Huiyong Wang, Xiaoqing Yuan, Yuling Zhao, Jianji Wang. Structure and Performance Modulation of Photo-Responsive Ionic Liquids [J]. Progress in Chemistry, 2019, 31(11): 1550-1559.
[8] Liangrong Yang, Huifang Xing, Hongnan Qu, Jiemiao Yu, Huizhou Liu. External Field Enhanced Environmental Responsive Solid Extraction Technology [J]. Progress in Chemistry, 2019, 31(11): 1615-1622.
[9] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[10] Li Yin, Jianqiao Xu*, Zhoubing Huang, Guosheng Chen, Juan Zheng, Gangfeng Ouyang*. Solid-Phase Microextraction Fibers Based on Novel Materials:Preparation and Application [J]. Progress in Chemistry, 2017, 29(9): 1127-1141.
[11] Li Yin, Jianqiao Xu*, Zhoubing Huang, Guosheng Chen, Siming Huang, Gangfeng Ouyang*. Application of in vivo Solid-Phase Microextraction on Pollutants Analysis in Living Animals and Plants [J]. Progress in Chemistry, 2017, 29(9): 1000-1007.
[12] Xu Zhao*, Qi Zhang, Haihong Wu, Xiaocui Hao, Liang Wang, Xiping Huang. Extraction of Lithium from Salt Lake Brine [J]. Progress in Chemistry, 2017, 29(7): 796-808.
[13] Haidong Cheng, Shuangjun Chen*. Degradation and Synthesis of Poly (Ethylene Terephthalate) by Functionalized Ionic Liquids [J]. Progress in Chemistry, 2017, 29(4): 443-449.
[14] Wen Zhang, Yingxin Mou, Song Zhao, Lixin Xie, Yuxin Wang, Jing Chen. Adsorption Materials for Lithium Ion from Brine Resources and Their Performances [J]. Progress in Chemistry, 2017, 29(2/3): 231-240.
[15] Song Heyuan, Kang Meirong, Jin Ronghua, Jin Fuxiang, Chen Jing. Application of Ionic Liquids to the Carbonylation Reactions [J]. Progress in Chemistry, 2016, 28(9): 1313-1327.