中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (7): 1446-1453 Previous Articles   Next Articles

• Special issues •

Adsorption of Uranium by Carbon Materials from Aqueous Solutions

Li Xingliang1,2,3,*, Song Qiang1, Liu Bijun2, Liu Chunxia1, Wang Hang1, Geng Junxia1, Chen Zhen1, Liu Ning3, Li Shoujian1,3   

  1. 1. College of Chemistry, Sichuan University, Chengdu 610064, China;
    2. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;
    3. Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Chengdu 610064, China
  • Received: Revised: Online: Published:
PDF ( 2319 ) Cited
Export

EndNote

Ris

BibTeX

Uranium is both the major constituent of nuclear fuel and one of the key nuclides in spent fuel reprocessing. Separation of uranium in various aqueous effluent streams via adsorption or solid-phase extraction can not only recycle this precious resource, but also reduce the cost for the final disposal of radioactive wastes. Carbon based sorbents, at least potentially, should play a correspondingly important role for this purpose. Carbon materials were chosen as the adsorbing material because of their large specific surface area, better acid and alkaline stability and higher radiation and thermal resistance. The adsorption capacity of carbon materials can be improved by surface oxidization and other chemical or physical modifications, such as impregnating, coating, or grafting functional molecules or groups that can extract uranium selectively from liquid solution. Comparing with other modification methods, grafting technology is a promising method because of its excellent affinity and high selectivity. Uranium in aqueous wastes can be effectively removed by electrosorption onto electrode made of carbon fibers. It seems that electrosorption process for the removal of uranium has a prospect of industrialization because of the high electrosorption efficiency and the low-cost regeneration of carbon fiber electrode.

Contents
1 Introduction
2 Adsorption of uranium on activated carbon
2.1 Adsorption of uranium on raw carbon
2.2 Adsorption of uranium on modified carbon
3 Adsorption of uranium on mesoporous carbon
4 Adsorption of uranium on carbon nanotubes
5 Electrosorption of uranium on carbon fiber electrode
6 Conclusion and prospects

CLC Number: 


[1] Winde F. Abstracts of the international mine water conference. Pretoria, South Africa, 19th-23rd, October, 2009. 772-781

[2] Johnson T. Global uranium supply and demand. (2010-01-14). . http: //www.cfr.org/publication/14705/global_uranium_supply_and_demand.html

[3] Supply of Uranium. World nuclear association 2009 market report. . http: //www.world-nuclear.org/info/inf75.html

[4] Pyrzynska K. Anal. Sci., 2007, 23: 631-637

[5] Feng M, Wang L, Zhao Y S, Liu C X, Chen Z, Yan L, Tian G, Wang H, Li S J. Radiochim. Acta, 2009, 98(1): 39-44

[6] Wang L, Feng M, Liu C X, Zhao Y S, Li S Q, Wang H, Yan L, Tian G, Li S J. Sep. Sci. Tech., 2009, 44(16): 4023 - 4035

[7] Zhao Y S, Liu C X, Feng M, Chen Z, Li S Q, Tian G, Wang L, Huang J B, Li S J. J. Hazard. Mater., 2010, 176(1/3): 119-124

[8] Tian G, Geng J X, Jin Y D, Wang C L, Li S Q, Chen Z, Wang H, Li S J. J. Hazard. Mater., 2011, 190(11): 442-450

[9] 赵永生(Zhao Y S), 陈震(Chen Z), 宋强(Song Q), 蒲朕(Pu Z), 王春丽(Wang C L), 李书琼(Li S Q), 王航(Wang H), 耿俊霞(Geng J X), 李首建(Li S J). 第九届全国核化学与放射化学学术研讨会论文摘要集(CNRCS2010)(Proceedings of the 9th National Symposium on Nuclear Chemistry and Radiochemistry). 149-150

[10] Kütahyali C, Eral M. Sep. Purif. Technol., 2004, 40: 109-114

[11] 曾宪富(Zeng X F), 吴全武(Wu Q W), 曾惠典(Zeng H D). 华南工学院学报(Journal of South China University of Technology),1965, 3(2): 6-11

[12] Gorman-Lewis D, Fein J B, Burns P C, Szymanowski J E S, Converse J. J. Chem. Thermodyn., 2008, 40: 980-990

[13] Hyun S P, Cho Y H, Hahn P S, Kim S J. J. Radioanal. Nucl. Chem., 2001, 250: 55-62

[14] Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt J J. Environ. Sci. Technol., 2004, 38(5): 1399-1407

[15] Taskaev E, Apostolov D. J. Radioanal. Nucl. Chem., 1978, 45: 65-71

[16] 唐国梁(Tang G L). 理化检验2化学分册(Physical Testing and Chemical Analysis Part B: Chemical Analysis),2001,36(7): 261-265

[17] El-Sayed A A, Hamed M M, Hmmad H A, El-Reefy S. Radiochim. Acta, 2007, 95: 43-48

[18] Saleem M, Afzal M, Qadeer R, Hanif J. Sep. Sci., Tech., 1992, 27(2): 239-253

[19] Mellah A, Chegrouche S, Barkat M. J. Colloid Interface Sci., 2006, 296: 434-441

[20] Qadeer R, Hanif J, Saleem M, Afzal M. J. Radioanal. Nucl. Chem., 1992, 165(4): 243-253

[21] Madrakian T, Mousavi A. Can. J. Anal. Sci. Spectros., 2008, 53(5): 232-239

[22] 苏龙能(Su L N). 国际放射医学核医学杂志 ( International Journal of Radiation Medicine and Nuclear Medicine), 1977, (1): 54-54

[23] El-Sayed A A. Radiochim. Acta, 2008, 96: 481-486

[24] 文传玺(Wen C X), 刘峙嵘(Liu S R), 桑国辉(Sang G H). 铀矿冶(Uranium Mining and Metallurgy), 2010, 29(2): 74-77

[25] Kütahyali C, Eral M. J. Nucl. Mater., 2010, 396: 251-256

[26] Sheng W Z, Li Z J, Liu Y H. Recent Patents on Chemical Engineering, 2008, 1: 27-40

[27] Park G I, Park H S, Woo S I. Sep. Sci. Technol., 1999, 34(5): 833-854

[28] Abbasi W A, Streat M. Sep. Sci. Technol., 1994, 29(9): 1217-1230

[29] Abbasi W A, Streat M. Solvent Extr. Ion Exch., 1998, 16(5): 1303-1320

[30] Starvin A M, Rao T P. Talanta, 2004, 63: 225-232

[31] Choi K C, Jung Y J, Kim S, Park S J, Lee H I, Kim J M. Solid State Phenom., 2007, 124/126: 1257-1260

[32] Someda H H, Sheha R R. Radiochemistry, 2008, 50(1): 56-63

[33] Coleman S J, Coronado P R, Maxwell R, Reynolds J G. Environ. Sci. Technol., 2003, 37: 2286-2290

[34] Kim J H, Lee H I, Yeon J W, Jung Y, Kim J M. J. Radioanal. Nucl. Chem., 2010, 286: 129-133

[35] Jung Y, Kim S, Park S J, Kim J M. Colloids Surf. A, 2008, 313/314: 292-295

[36] Jung Y, Lee H I, Kim J K, Yun M H, Hwang J, Ahn D H, Park J N, Boo J H, Choi K S, Kim J M. J. Mater. Chem., 2010, 20: 4663-4668

[37] 彭先佳(Peng X J), 贾建军(Jia J J), 栾兆坤(Luan Z K), 王军(Wang J). 化学进展 ( Progress in Chemistry), 2009, 21(9): 1987-1992

[38] Rao G P, Lu C, Su F. Sep. Purif. Technol., 2007, 58: 224-231

[39] Schierz A, Znker H. Environ. Pollut., 2009, 157: 1088-1094

[40] Shao D D, Jiang Z Q, Wang X K, Li J X, Meng Y D. J. Phys. Chem. B, 2009, 113(4): 860-864

[41] Arnold T, Zorn T, Znker H, Bernhard G, Nitsche H. J. Contam. Hydrol., 2001, 47: 219-231

[42] Salzmann C G, Llewellyn S A, Tobias G, Ward M A H, Huh Y, Green M L H. Adv. Mater., 2007, 19: 883-887

[43] Dumitrescu I, Wilson N R, Macpherson J V. J. Phys. Chem. C, 2007, 111: 12944-12953

[44] Belloni F, Kütahyali C, Rondinella V V, Carbol P, Wiss T, Mangione A. Environ. Sci. Technol., 2009, 43: 1250-1255

[45] 陈榕(Chen R), 胡熙恩(Hu X E). 化学进展( Progress in Chemistry),2006,18(1): 80-86

[46] Foo K Y, Hameed B H. J. Hazard. Mater., 2009, 170: 552-559

[47] 范丽(Fan L),周艳伟(Zhou Y W),杨卫身(Yang W S),杨凤林(Yang F L). 新型炭材料 ( New Carbon Materials),2004, 19(2): 145-150

[48] Xu Y, Zondlo J W, Finklea H O, Brennsteiner A. Fuel Process. Technol., 2000, 68: 189-208

[49] Stover S M S. Dissertation of West Virginia University, 1999

[50] Jung C H, Lee H H, Moon J K, Won H J, Shul Y G. J. Radioanal. Nucl. Chem., 2010, 287(3): 833-839

[1] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[2] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[3] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[4] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[5] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[6] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[7] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[8] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[9] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[10] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[11] Xuebing Tao, Jipan Yu, Lei Mei, Changming Nie, Zhifang Chai, Weiqun Shi. Dinitrogen Activation by Uranium Complex [J]. Progress in Chemistry, 2021, 33(6): 907-913.
[12] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[13] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[14] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[15] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.