中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (7): 1411-1428 Previous Articles   Next Articles

• Special issues •

A Review of Beneficial Effects of Ruducing Environment at the Near-field of KBS-3 Repository

Daqing Cui1,2   

  1. 1. Stusvik Nuclear AB, 611 8;
    2. Material and Environmental Chemistry, Stockholm University, Sweden
  • Received: Revised: Online: Published:
PDF ( 1216 ) Cited
Export

EndNote

Ris

BibTeX

The recent research activities, i.e. relevant publications and the authors experiments on chemical behaviors of spent nuclear fuel (SNF) and canister materials at near-field of KBS-3 deep geological repository were reviewed. The advantages of reductive substances at KBS-3 repository to the spent fuel disposal safety were discussed. Using data from literatures and experiments, the author demonstrated the blocking effect of hydrogen generated for iron canister corrosion on SNF dissolution, and discussed the reaction mechanism. It is also proved that the γ radiation expected at the early stage of disposal and micro mole level oxidative species in water solution can only slightly enhance the corrosion rate of copper canister to μm/y level, still 103 times slower than that at air saturated conditions. During a long period of time after copper canister leaks, under combined effects of iron canister material, hydrogen and fission product alloy particle catalysts, SNF dissolution can be depressed or blocked, and most radiotoxic multivalent radionuclides U, Np, Tc and Se released from SNF can be reduced and precipitated. This paper supplies scientific bases for the sitting of a SNF repository at a stable reducing area, and designing of canisters with massive iron material.

CLC Number: 


[1] The Nuclear Communications Network.www.worldnuclear.org, 3 June 2009/News N° 41

[2] Werme L, Sellin P, Kjellbert N. Copper Canisters for Nuclear High Level Waste Disposal. Corrosion Aspects, SKB TR 92-26, 1992

[3] KBS-3, Final Storage of Spend Nuclear Fuel. Report by the Swedish Nuclear Fuel Supply Co. Stockholm, Sweden, 1983

[4] Bernard P, Barre B, Camarcat N, Boidron M, Boullis B, Cavedon J M, Iracane D. Progress in R&D relative to high level and long-lived radioactive wastes management: 1991 French Law. Proceedings of the Conference GLOBAL_99, Jackson Hole (USA), 29 Aug. -3 Sep. 1999

[5] Poinssot C, Ferry C, Lovera P, Jegou C, Gras J M. Journal of Nuclear Materials 2005, 346: 66-77

[6] Thomas L E, Einziger R E, Woodey R E. J. Nucl. Mater., 1989, 166: 243-251

[7] Shoesmith D W. J. Nucl. Mater., 2000, 282: 1-31

[8] Eriksen T E, Eklund U B, Werme L, Bruno J. J. Nucl. Mater., 1995, 227: 76-82

[9] Puigdomenech I, Trotignon L, Kotelnikova S, Pedersen K, Griffault L, Michaud V, Lartigue J E, Hama K, Yoshida H, West J M, Bateman K, Milodowski A E, Banwart S A, Rivas-Perez J, Tullborg E L. Mat. Res. Soc. Symp. Proc., 1999, 608: 179-184

[10] King F, Ahonen L, Taxén C, Vuorinen U, Werme L. Copper corrosion under expected conditions in a deep geologic repository. SKB Technical Report TR-01-23, 2001

[11] Cui D Q, Ekeroth E, Fors P, Spahiu K. The interaction of dissolved hydrogen with spent fuel or UO2 doped with alpha emitters and its effect on radionuclide release under deep repository conditions, CAN 149: 520263, AN 2008: 871114, Scientific basis for nuclear waste management, Mat. Res. Soc. Symp., 2008

[12] Schmidt K H, J. Phys. Chem., 1977, 81: 1257-1263

[13] Spahiu K, Cui D, Lundstrm M. Radiochimica Acta, 2004, 92: 625-629

[14] Carbol P, Cobos-Sabate J, Glatz J P, Grambow B, Kienzler B, Loida A, Martinez A, Valiente E, Metz V, Quiones J, Ronchi C, Rondinella V, Spahiu K, Wegen D H, Wiss T. SKB Technical Report TR-05-09, Stockholm, 2005, p. 139

[15] Rai D, Felmy A R, Ryan J L. Inorg. Chem., 1990, 29: 260-264

[16] Loida A, Metz V, Kinzler B. Mat. Res. Soc. Symp. Series, 2007, 985: 15-20

[17] Metz V, Bohnert V E, Kelm M, Schild D, Reinhardt J, Kienzler B, Buchmeiser M. Mat. Res. Soc. Symp. Series, 2007, 985: 33-40

[18] Zehavi D, Rabani J. J. Phys. Chem., 1972, 76: 312-319

[19] Pastina B, LaVerne J A. J. Phys. Chem. A, 2001, 105: 9316-9322

[20] Eriksen T, Jonsson M, Merino J. J. Nucl. Mat., doi: 10.1016/j. jnucmat. 2007.12.003, 2008

[21] Spahiu K, Werme L, Eklund U B. Radiochim. Acta, 2000, 88: 507-511

[22] Albinsson Y, Jensen A, Oversby V, Werme L. Mat. Res. Soc. Symp., 2003, 757: 407-413

[23] Ollila K, Albinsson Y, Oversby V, Cowper M. SKB Technical Report TR-03-13, 2003

[24] Spahiu K, Eklund U B, Cui D, Lundstrm M. Mat. Res. Soc. Symp., 2002, 713: 633-638

[25] Loida A, Grambow B, Geckeis H. Proceedings ICEM 01, Bruges, Belgium, 2001

[26] Loida A, Metz V, Kienzler B, Geckeis H. J. Nucl. Mat., 2005, 346: 24-31

[27] Jonsson M, Nielsen F, Ekeroth E, Eriksen T. Mat. Res. Soc. Symp., 2003, 807: 385-390

[28] Grambow B, Loida A, Dressler P, Geckeis H, Gago J, Casas I, de Pablo J, Gimenez J, M. E. Torrero M E. FZKA Report 5702, Forschungszentrum Karlsruhe, 1996

[29] Grambow B, Loida A, Martinez-Esparza A, Diaz-Arocas P, de Pablo J, Paul J L, Marx G, Glatz J P, Lemmens K, Ollila K, Christensen H. EUR19140 EN, 2000

[30] Farrel J, Bostick W, Jarabek R, Fiedor N. Ground Water, 1999, 37(4): 618

[31] Cui D, Spahiu K. Radiochim. Acta, 2002, 90: 1-6

[32] King F, Quinn M J, Miller H H. SKB Technical Report TR-99-27, 1999

[33] Shoesmith D W. NWMO Technical Report TR-2007-03, Toronto, 2007

[34] Sunder S, Boyer G D, Miller N H. J. Nucl. Mater., 1990, 175: 163-169

[35] Broczkowski M E, Noel J J, Shoesmith D W. J. Nucl. Mat., 2005, 346: 16-23

[36] King F, Shoesmith D. SKB Technical Report TR-04-20, Stockholm, 2004

[37] Broczkowski M E, Goldik J, Santos B, Noel J, Shoesmith D. Mat. Res. Soc. Symp. Proc., 2007, 985: 3-14

[38] Nilsson S, Jonsson M. J. Nucl. Mat., 2008, 372: 160-163

[39] Trummer M, Nilsson S, Jonsson M. J. Nucl. Mat., 2008, submitted.

[40] Jonsson M, Nielsen F, Roth O, Ekeroth E, Nilsson S, Hossain M. Environ. Sci. Technol., 2007, 41: 7087-7093

[41] Cui D, Low J, Sjstedt C J, Spahiu K. Radiochim. Acta, 2004, 92: 551-555

[42] Muzeau B. Ph. D. Thesis, University of Paris XI, Orsay, 2007, 274

[43] Rondinella V, Cobos J, Wiss T. Mat. Res. Soc. Symp. Proc., 2004, 824: 167-174

[44] Jegou C, Muzeau B, Broudic V, Poulesquen A, Roudil D, Jorion F, Corbel C. Radiochim. Acta, 2005, 93: 35-42

[45] Muzeau B, Jégou C, Delaunay F, Broudic V, Brevet A, Catalette H, Simoni E. J. Alloy Comp., 2007, doi: 10.1016/j. jallcom. 2007.12.054.

[46] Newton T W. ERDA Critical Review Series. NTIS, Springfield VA, 1975

[47] Baker F B, Newton T W. J. Phys. Chem., 1961, 65: 1897-1899

[48] Ekeroth E, Jonsson M. J. Nucl. Mat., 2003, 322: 242-248

[49] Cachoir C, Carbol P, Cobos J, Glatz J P, Grambow B, Lemmens K, Martinez A, Menecart T, Ronchi C, Rondinella V, Spahiu K, Wegen D. ITU Report SCA 2005/1, 2005

[50] Poinssot C, Ferry C, Grambow B, Kelm M, Spahiu K, Martinez A, Johnson L, Cera E, de Pablo J, Quinones J, Wegen D, Lemmens K, McMenamin T. Mat. Res. Symp. Proc., 2006, 932: 421-432

[51] Christensen H, Sunder S. Nuclear Technology, 2000, 131: 102-123

[52] Liu J, Neretniks I. Mat. Res. Soc. Symp. Proc., 1995, 353: 1179-1186

[53] Grauer R. SKB Technical Report TR 91-39, Stockholm, 1991

[54] Wren J C, Shoesmith D W, Sunder S. J. Electrochem. Soc., 2005, 152: B470-B481

[55] Jensen A , Fors P, Skarnemark G, Albinsson Y. Deliv. 1.5.3, EU-NF-PRO, 2006

[56] Icenhour A, Toth L, Wham R, Brunson R. Nuclear Technology, 2004, 146: 206-209

[57] Haschke J M, Allen T H, Stakebake J L. J. Alloys Comp., 1996, 243: 23-35

[58] Korzhavi P, Vitos D, Andersson D, Johansson B. Nature Materials, 2004, 3: 224-228

[59] Colmenares C A. Prog. Solid State Chem., 1984, 15: 257-364

[60] Imizu Y, Tanabe K, Hattori H. Journal of Catalysis, 1979, 56: 303-314

[61] Devoy J, Haschke J, Cui D, Spahiu K. Mat. Res. Soc. Symp. Series, 2003, 807: 41-46

[62] Spahiu K, Devoy J, Cui D, Lundstrm M. Radiochim. Acta, 2004, 92: 597-601

[63] Ekeroth E, Jonsson M, Eriksen T E, Ljungqvist K, Kovacs S, Puigdomenech I. J. Nucl. Mater., 2004, 334: 35-39

[64] LaVerne J A, Tandon L. J. Phys. Chem. B, 2003, 107: 13623-13628

[65] Petrik N G, Alexandrov A B, Vall A I. J. Phys. Chem. B, 2001, 105: 5935-5944

[66] LaVerne J A, Tandon L. J. Phys. Chem. B, 2002, 106: 380-386

[67] Stultz J, Paffet M T, Joyce S A. J. Phys. Chem. B, 2004, 108: 2362-2364

[68] Cui D, Puranen A, Devoy J, Schderger A, Leupin O X, Wersin P, Gens R, Spahiu K. J. Radioanal. Nucl. Chem., 2009, 282: 349-354

[69] Puranen A, Jonsson M, Dhn R, Cui D Q. Journal of Nuclear Materials, 2009, 392(3): 519-524

[70] Kvashnina K, Butorin S, Cui D, Puranen A, Gens R. Journal of Physics: Conference Series, 2009, 190: art. no. 012191

[71] Puranen A, Jonsson M, Dhn R, Cui D Q. Journal of Nuclear Materials, 2010, 406(2): 230-237

[72] Wegen D, Carbol P, Seibert A, Gouder T, Jonsson M, Trummer M, Loida A, Kienzler B, Cui D, Spahiu K. Redox processes affecting the spent fuel sourterm, 2nd Annual Workshop Proc. 7th EC FP-Recosy, Karlsruhe Institute of Technology, KIT SCIENTIFIC REPORTS 7557, 2010


[73] Cui D Q, Low J, Lungdsstrm M, Spahiu K. Mat. Res. Soc. Symp. Series, 2004, 807: 89-94


[74] Cui D, Rondinella V V, Low J, Pan J, Tamborini G, Spahiu K. On the behavior of spent fuel under simulated early canister-failure conditions. 2006 International High Level Radioactive Waste Management Conference, Las Vegas (USA) 30 April -4 May 2006, ANS Proceedings of the Conference 925 (2006), CAN 149: 114117, AN 2008: 161931

[75] Cui D. On near-field chemistries of redox sensitive radionuclides, effects of iron canister material. Mobil fission and activation products in nuclear waste disposal. International workshop. 2007-01-16, 19, La Baule, France (http: //mofap07.in2p3.fr/18janvier/Cui. pdf)

[76] Cui D, Ranebo Y, Low J, Rondinella V V, Pan J, Spahiu K. “Immobilization of Radionuclides on Iron Canister Material at Simulated Near-field Conditions” MRS 2008, published at Scientific basis for nuclear waste management, Mat. Res. Soc. Symp. Proceeding, 2009. DOI: 10.1557/PROC-1124-Q02-04


[77] Cui D, Low J, Spahiu K. Energy & Environmental Sceince, DOI: 10.1039/C0EE00582G. 2011


[78] Johnson L, Günther-Leopold I, Waldis J K, Linder H P, Low J, Cui D, Ekeroth E, Zwicky H U, Spahiu K, Evins L Z. J. Nucl. Mat., 2011, accepted

[79] Forsyth R. An evaluation of results from the experimental programme performed in the Studsvik Hot Cell Laboratory. SKB Technical Report 97-25, December 1997

[80] Ekeroth E, Low J, Zwicky H U, Spahiu K. Corrosion Studies with High Burnup LWR Fuel in Simulated Groundwater. MRS proceeding 1124-Q02-07, 2008

[81] Cui D, Rondinella V V, Low J, Spahiu K. Applied Catalysis B: Environmental, 2010, 94: 173-178

[82] Mattsson E. External corrosion of copper canisters during the initial phase of the repository. SKB Encapsulation Project, PM 97-3420-22, Stockholm, 1997

[83] Marsh G P, Taylor K J, Harker S H. The kinetics of pitting corrosion of carbon steel. SKB TR 91-62, SKB, Stockholm, 1991

[84] Kim S, Chun K, Kang K C, Baik M, Kwon S, Choi J. J. Ind. Eng. Chem., 2007, 13(6): 959-964

[85] Robit-Pointeau V, Poinssot C, Vitorge P, Grambow B, Cui D, Spahiu K, Catalette H. Mater. Res. Soc. Symp. Proc., 2006, 932: 489-496

[86] Stieff L R. Am. Mineral., 1956, 41: 675-688

[87] Fuchs L H, Gebert E. Am. Mineral., 1958, 43: 243-248

[88] Dubinchuk V T, Naumova I S, Kravtsova I Y, Sidorenko G A. Mineral. Zh., 1981, 3: 81

[89] Speer J A. Rev. Mineral., 1980, 5: 113

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[6] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[7] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[8] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[9] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[10] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[11] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[12] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[13] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[14] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[15] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.