中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (7): 1400-1410 Previous Articles   Next Articles

• Special issues •

Models Used in Deep Geological Deposit of High-Level Radioactive Waste

Wang Xiangyun1,*, Chen Tao2, Liu Chunli1   

  1. 1. Beijing National Laboratory for Molecular Science, Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
    2. School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
  • Received: Revised: Online: Published:
PDF ( 1242 ) Cited
Export

EndNote

Ris

BibTeX

China has decided to deposit high level radioactive waste (HLW) that will be produced by quickly developing nuclear power industry. In order to assess the repository safety and predict the migration behavior of radionuclides that could be released when HLW canisters would be damaged. In addition to experimental investigations modeling has also to be used for these purposes. In this paper models involved in deep geological deposit of HLW, relevant software, and necessitated databases are reviewed with emphasis on geochemical models for chemical speciation. Multi-field coupling models are also described briefly. Finally, methods and programs for treatment of migration experimental data used in our laboratory are schematically reported.

CLC Number: 


[1] Jardine P M, Mehlhorn T L, Larsen I L, Bailey W B, Brooks S C, Roh Y, Gwo J P. J. Contam. Hydrol., 2002, 55(1/2): 137-159

[2] Spycher N F, Sonnenthal E L, Apps J A. J. Contam. Hydrol., 2003, 62/63(sp): 653-673

[3] Xu T F, Sonnenthal E, Bodvarsson G. J. Contam. Hydrol., 2003, 64(1/2): 113-127

[4] Mangold D C, Tsang C F. Rev. Geophys., 1991, 29(1): 51-79

[5] Darban A K, Yong R N, Ravaj S. Appl. Clay Sci., 2008, 47(1/2): 127-132

[6] Crawford J. Geochemical Modeling-A review of Current Capabilities and Future Directions. SNV Report 262, Swedish Environmental Protection Agency, 1999

[7] Zachara J M, Serne J, Freshley M, Mann F, Anderson F, Wood M, Jones T, Myers D. Vadose Zone J., 2007, 6(4): 982-1003

[8] Liu W, Wilder D G, Blink J A, Blair S C, Buscheck T A, Chesnut D A, Glassley W E, Lee K, Roberts J J. The Testing of Thermal-Mechanical-Hydrological-Chemical Process Using A Large Block. Reston: ASCE, 1994(1048): 1938-1945

[9] Manteufel R D, Ahola M P, Turner D R, Chowdhury A H. An Assessment of Couple Thermal-Hydrologic-Mechanical-Chemical Processes. Reston: ASCE, 1993(1115): 576-583

[10] Hummel W, Berner U, Curti E, Pearson F J, Thoenen T. Radiochim. Acta, 2002, 90(9/11): 805-813

[11] Altmaier M, Brendler V, Hagemann S, Herbert H J, Kienzler B, Marquardt C M, Moog H C, Neck V, Richter A, Voigt W, Wilhelm S. THEREDA - A Contribution to Long-Term Safety of Repositories of Nuclear and Non-Nuclear Wastes. ATW-Int. J. Nucl. Power, 2008, 53(4): 249-253

[12] Mompean F J, Wanner H. Radiochim. Acta, 2003, 91(11): 617-621

[13] Harvey K B. Measurement of Diffusive Properties of Intact Rock. AECL-11439, 1996

[14] García-Gutiérrez M, Cormenzana J L, Missana1 T, Mingarro1 M, Molinero J. J. Iberian Geo., 2006, 32(1): 37-53

[15] Andersson P, Byegard J, Tullborg E L, Doe T, Hermanson J, Winberge A. J. Contam. Hydrol., 2004, 70(3/4): 271-297

[16] 王祥云(Wang X Y), 陈涛(Chen T), 刘春立(Liu C L). 中国科学 B辑(Science in China, Series B), 2009, 52(11): 2020-2032

[17] Koretsky C. J. Hydrol., 2000, 230(3/4): 127-171

[18] Crawford J. Geochemical Modeling - A Review of Current Capabilities and Future Directions. SNV Report 262, Swedish Environmental Protection Agency, 1999

[19] Merkel B J, Planer-Friedrich B. Groundwater Geochemistry- A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems. Berlin: Springer-Verlag, , 2005

[20] Wolery T J. EQ3/6 (7.0): A Software Package for Geochemical Modeling of Aqueous Systems: Package Overview and Installation Guide. UCRL-MA-110661PT, 1992

[21] Parkhurst D L, Appelo C A J. Users guide to PHREEQC (2.0): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. USGS Water-Resources Investigations Report 99-4259, 1999

[22] NAC Consulting. Fuel-Trac: Nuclear Fuel Cycle Database. http: //www. nacworldwide. com/ConsultingNFCPStatusReports. aspx

[23] sthols E, Wanner H. TDB-0, The NEA Thermochemical Data Base Project, Version of 25th February 2000. http: //www. nea. fr/html/dbtdb/guidelines/tdb0new. pdf

[24] Voigt W, Brendler V, Marsh K, Rarey R, Wanner H, Gaune-Escard M, Cloke P, Vercouter T, Bastrakov E, Hagemann S. Pure Appl. Chem., 2007, 79(5): 883-894

[25] Iyer R M, Oblozinsky P, Muir D W, Schwerer O. J. Radioanal. Nucl. Chemi., 1999, 239(1): 139-141

[26] Roberto J B, de la Rubia T D. JOM, 2007, 59(4): 16-19

[27] Yui M, Rai D, Ochs M, Shibata M. J. Nucl. Sci and Technol., 2003, 40(5): 356-362

[28] Baik M H, Lee S Y, Lee J K, Kim S S, Park C K, Choi J W. Nucl. Eng. & Technol., 2008, 40(7): 593-608

[29] Altmaier M, Brendler V, Hagemann S, Herbert H J, Kienzler B, Marquardt C M, Moog H C, Neck V, Richter A, Voigt W, Wilhelm S. ATW-Int. J. Nucl. Power, 2008, 53(4): 249

[30] Bion L. Radiochim. Acta, 2003, 91(11): 633-637.

[31] 周文斌(Zhou W B), 张展适(Zhang Z S), 史维浚(Shi W J). EQ3/6及其在核废物处置领域的应用(EQ316 and Applications in the Field of Nuclear Waste Disposal), 北京: 原子能出版社(Beijing: Atomic Energy Press), 2004

[32] Merkel B J, Planer-Friedrich B. 朱义年, 王焰新译, 地下水地球化学模拟的原理及应用, 北京: 中国地质大学出版社(Beijing: China University of Geosciences Press), 2005

[33] Allison J D, Brown D S, Novo-Gradac K J. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 Users Manual. EPA/600/3-91/021, 1991

[34] Kulik D A. Am. J. Sci., 2002, 302(3): 227-279

[35] Bethke C M, Yeakel S. The Geochemists Workbench Release 8.0, GWB Essentials Guide, Hydrogeology Program. http: //www.geology.illinois.edu/Hydrogeology/pdf/GWBessentials.pdf

[36] Van der Lee J. Thermodynamic and Mathematical Concepts of CHESS. Technical Report Nr.LHM/RD/98/39, 1998

[37] Ball J W, Nordstrom D K. Users Manual for WATEQ4F, with Revised Thermodynamic Data Base and Test Cases for Calculating Speciation of Major, Trace, and Redox Elements in Natural Waters. U. S. Geological Survey Open-File Report 91-183, 1991

[38] Verweij W. CHEAQS (A Program for Calculating Chemical Equilibria in Aquatic Systems). http: //home. tiscali. nl/cheaqs/index. html

[39] May P M, Murray Y K. Talanta, 1991, 38(12): 1419-1426

[40] 陈涛(Chen T), 王祥云(Wang X Y), 田文宇(Tian W Y), 孙茂(Sun M), 黎春(Li C), 刘晓宇(Liu X Y), 王路化(Wang L H), 刘春立(Liu C L). 物理化学学报(Acta Physico-chimica Sinica), 2010, 26(4): 811-816

[41] 陈涛(Chen T), 王祥云(Wang X Y), 田文宇(Tian W Y), 孙茂(Sun M), 黎春(Li C), 刘春立(Liu C L). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2009, 25(3): 386-390

[42] Li X L. TIMODAZ (Thermal Impact on the Damaged Zone Around a Radioactive Waste Disposal in Clay Host Rocks). http: //www. timodaz. eu/default. aspx

[43] Jing L R, Feng X T. Chin. J. Rock Mech. Eng., 2003, 22(10): 1704-1715

[44] Crawford J. Geochemical Modeling-A Review of Current Capabilities and Future Directions. SNV Report 262, Stockholm, Swedish Environmental Protection Agency, 1999

[45] Chen Z, Anderson G. Environmental Applications of Geochemical Modeling, NY: Cambridge University Press, 2002

[46] Darban A K, Yong R N, Ravaj S. Appl. Clay Sci., 2010, 47(1/2): 127-132

[47] Xu T, Gerard F, Pruess K, Brimhall G. Modeling Non-Isothermal Multiphase Multi-Species Reactive Chemical Transport in Geologic Media, LBNL-40504 UC-400, 1997

[48] Shen H Y, Nikolaidis N P. Ground Water, 1997, 35(1): 67-78

[49] Martinez F S J, Pachepsky Y A, Rawls W J. Vadose Zone J., 2009, 8(1): 242-249

[50] Harvey K B, Measurement of Diffusive Properties of Intact rock. AECL-11439, 1996

[51] Zhang M, Takeda M, Nakajima H. Strategies for Solving Potential Problems Associated with Laboratory Diffusion and Batch Experiments-Part 1: An Overview of Conventional Test Methods. WM06 Conference, 2006

[52] Aertsens M, De Canniere P, Lemmens K, Maes N, Moors H. Phys. Chem. Earth, 2008, 33(14/16): 1019-1025

[53] Holtta P, SiitariKauppi M, Hakanen M, Huitti T, Hautojarvi A, Lindberg A. J. Contam. Hydrol., 1997, 26(1/4): 135-145

[54] Chen T, Sun M, Li C, Tian W Y, Liu X Y, Wang L H, Wang X Y, Liu C L. Radiochim. Acta, 2010, 98(5): 301-305

[55] 陈涛(Chen T), 田文宇(Tian W Y), 孙茂(Sun M), 黎春(Li C), 刘晓宇(Liu X Y), 王路化(Wang L H), 王祥云(Wang X Y), 刘春立(Liu C L). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2009, 25(5): 761-766

[56] Zhang M, Takeda M, Nakajima H. Strategies for Solving Potential Problems Associated with Laboratory Diffusion and Batch Experiments-Part 2: Future Improvements. WM06 Conference, 2006

[57] Miguel A M. Numerical and Analytical Solutions of Dispersion in a Finite Adsorbing Porous Medium. Water Resour. Bull., 1974, 10(1): 80-90

[58] Grolimund D, Elimelech M, Borkovec M, Barmettler K, Kretzschmar R, Sticher H. Environ. Sci. Technol., 1998, 32(22): 3562-3569

[59] Pang L P, Goltz M, Close M. J. Contam. Hydrol., 2003, 60(1/2): 123-134

[1] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[2] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[3] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[4] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[5] Anen He, Jiaojiao Xie, Chungang Yuan. Heavy Metal Speciation Analysis and Distribution Characteristics in Atmospheric Particulate Matters [J]. Progress in Chemistry, 2021, 33(9): 1627-1647.
[6] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[7] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[8] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[9] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[10] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[11] Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Anticancer Drugs Targeting Glucose Transporters(GLUTs) [J]. Progress in Chemistry, 2020, 32(12): 1869-1878.
[12] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.
[13] Xuanyu Liu, Xiaoting Zhu, Shuaishuai Ding, Rongjin Li, Wenping Hu. Organic Spin Valves and Their Magnetoresistance Effect [J]. Progress in Chemistry, 2019, 31(9): 1199-1212.
[14] Qinshan Cai, Shirong Wang, Yin Xiao, Xianggao Li. Application of Solution-Processed Multi-Layer Organic Light-Emitting Diodes Based on Cross-Linkable Small Molecular Hole-Transporting Materials [J]. Progress in Chemistry, 2018, 30(8): 1202-1221.
[15] Yuanyuan Qi, Mingguang Li, Honglei Wang, Wen Zhang, Runfeng Chen*, Wei Huang*. Applications of Novel Hole-Transporting Material Copper(Ⅰ) Thiocyanate (CuSCN) in Optoelectronic Devices [J]. Progress in Chemistry, 2018, 30(6): 785-796.