中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (7): 1338-1344 Previous Articles   Next Articles

• Special issues •

Studies on Separating Trivalent Actinides from Lanthanides by Dialkyldithiophosphinic Acid Extraction

Chen Jing*, Wang Fang, He Xihong, Pan Dengfang   

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
PDF ( 1300 ) Cited
Export

EndNote

Ris

BibTeX

The effective separation of trivalent actinides from lanthanides is one of key steps to realizing the advanced nuclear fuel cycle based on “partitioning-transmutation”. However, their effective separation is always one of difficulties in the separation field because of the very similar physical and chemical properties between trivalent actinides and lanthanides. In the separation by solvent extraction, ligands containing soft donor S, N show good performance to separate trivalent actinides from lanthanides. In 1995, Cyanex 301, a commercial reagent, was found to be able to separate trivalent actinides from macro amount of lanthanides, and then the purified product bis(2,4,4-trimethylpentyl)dithiophosphinic acid was proven to have remarkable ability to separate actinides from both micro and macro amount of lanthanides. The separation process was studied and demonstrated by hot test. The dominant complex in extraction is of cubic structure with a coordination number of 8. The phenyl, chlorophenyl-substituted compounds had no separation ability, but achieved a good separation performance with the synergistic extraction of neutral extractants such as trialkylphosphate. Recently, o-trifluoromethylphenyl- substituted extractant compound was proven to have an excellent separation performance. Although the improvement in stability is desired and the further investigation to the separation mechanism is needed, dialkyldithiophosphinic acids are promising reagents for trivalent actinides/lanthanides separation because of the outstanding separation performance.

Contents
1 Introduction
2 Separation of trivalent actinides from lanthanides
3 Separation of trivalent actinides from lanthanides by Cyanex 301 extraction
4 Separation of trivalent actinides from lanthanides by dialkyldithiophosphinic acids extraction
5 Future of dialkyldithiophosphinic acid-based separation technology

CLC Number: 


[1] Croff A C, Blomeke J O. Actinide Partitioning-Transmutation Program, Final Report, ORNL 5566 (1980)

[2] Zhu Y J. An Extractant (TRPO) for the Removal and Recovery of Actinides from High Level Radioactive Liquid Waste. ISEC’83, p9, Denver, Colorado, USA, 1983

[3] Glatz J P, Song C L, Koch L. Bokelund H, He X M. Hot Tests of the TRPO Process for the Removal of TRU Elements From HLLW, Proceedings of the Global’95 Conference, Versailles, France, 1995, Vol. 1, 548-555

[4] Cuillerdier C, Musikas C, Hoel P. Sep. Sci. Technol., 1991, 26: 1229-1244

[5] Horwitz E P, Schulz W W. The TRUEX Process: A Vital Tool for Disposal of U. S. Defense Nuclear Waste. In: New Separation Chemistry Techniques for Radioactive Waste and Other Specific Application (eds. Cecille L, Casarci M, Pietrelli L). London: Elsevier, 1991. 21-34

[6] Vandegrift G F, Regalbuto M C, Aase S B, Arafat H A. Lab-scale Demonstration of the UREX+ Process. Waste Management Conference (WM’04), February 29, -March 4, 2004. Tucson, Arizona, USA. Paper No 4323

[7] Proctor S G. Rare Earth Removal from Americium Oxide. US 3723594

[8] Hulet E K, Gutmacher R G, Coops M S. J. Inorg. Nucl. Chem., 1961, 17: 350-354

[9] Nash K L. Solv. Extr. Ion. Exch., 1993, 11(4): 729-768

[10] Choppin G R. J. Less-common. Metals, 1983, 93: 323-330

[11] Weaver B, Kappelmann F A. Talspeak, A New Method of Separating Americium and Curium from the Lanthanides by Extraction from an Aqueous Solution of an Aminopolyacetic Acid Complex with a Monoacetic Organophosphate or Phosphonate. August 1964, ORNL-3559

[12] Liljenzin J O, Persson G, Svantesson I, Wingefors S. Radiochim. Acta, 1984, 35: 155-162

[13] Grimes T S, Nilsson M, Nash K L. The Behavior and Importance of Lactic Acid Complexation in TALSPEAK Extraction Systems. Proceeding of international solvent extraction conference, ISEC 2008, Tucson, Arizona, USA. Sep. 15-19, 2008.p563-568

[14] Nilsson M, Nash K L. Solv. Extr. Ion. Exch., 2009, 27(3): 354-377

[15] Leggetta C J, Liu G K, Jensen M P. Solv. Extr. Ion. Exch., 2010, 28(3): 313-334

[16] Hill C, Guillaneux D, Berthon L, Madic C. J. Nucl. Sci. Technol., 2002, S3: 309-312

[17] Foreman M R S J, Hudson M J, Geist A, Madic C, Weigl M. Solv. Extr. Ion. Exch., 2005, 23(5): 645-662

[18] Nilsson M, Ekberg C, Foreman M, Hudson M, Liljenzin J O, Modolo G. Solv. Extr. Ion. Exch., 2006, 24(6): 823-843

[19] Retegan T, Ekberg C, Dubois I, Fermvik A, Skarnemark G, Wass T J. Solv. Extr. Ion. Exch., 2007, 25(4): 417-431

[20] Zhu Y J. Radiochim. Acta, 1995, 68(2): 95-98

[21] Zhu Y J, Chen J, Jiao R Z. Solv. Extr. Ion. Exch., 1996, 14(1): 61-68

[22] 陈靖(Chen J), 焦荣洲(Jiao R Z), 朱永 NFDB2 (Zhu Y J). 应用化学(Chinese Journal of Applied Chemistry), 1996, 13(2): 45-48

[23] Sole K C, Hiskey J B, Ferguson T L. Solv. Extr. Ion. Exch., 1993, 11(5): 783-796

[24] Chen J, Jiao R Z, Zhu Y J. Solv. Extr. Ion. Exch., 1996, 14(4): 555-565

[25] Chen J, Veltkamp A C, Booij A S. J. Radioanal. Nucl. Chem., 2002, 253(1): 31-34

[26] 彭燕斌(Peng Y B), 陈靖(Chen J). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2006, 28(3): 178-182

[27] Zhu Y J, Xu J M, Chen J, Chen Y Z. J. Alloys Comp., 1998, 271/273: 742-745

[28] 陈靖 (Chen J), 朱永jun (Zhu Y J), 焦荣洲 (Jiao R Z). 清华大学学报(自然科学版)(Journal of Tsinghua University (Science and Technetogy), 1998, 38(4): 1-4

[29] 田国新(Tian G X), 清华大学博士论文 (Doctoral Dissertation of Tsinghua University), 2001

[30] Jensen M P, Bond A H, Rickert P G, Nash K L. J. Nucl. Sci. Technol., 2002, S3: 255-258

[31] Tian G X, Zhu Y J, Xu J M, Zhang P, Hu T D, Xie Y N, Zhang J. Inorg. Chem., 2003, 42(3): 735-741

[32] Cao X Y, Heidelberg D, Ciupka J, Dolg M. Inorg. Chem., 2010, 49: 10307-10315

[33] 陈靖(Chen J), 清华大学博士论文 (Doctoral Dissertation of Tsinghua University), 1996

[34] Chen J, Zhu Y J, Jiao R Z. Sep. Sci. Technol., 1996, 31(19): 2723-2731

[35] Chen J, Jiao R Z, Zhu Y J. Radiochimi. Acta, 1997, 76: 129-130

[36] Chen J, Tian G X, Jiao R Z, Zhu Y J. J. Nucl. Sci. Technol., 2002, S3: 325-327

[37] Peterman D R, Law J D, Todd T A, Tillotson R D. Use of Cyanex-301 for Separation of Am/Cm from Lanthanides in an Advanced Nuclear Fuel Cycle. ACS Symposium Series (2006), 933

[38] Law J D, Peterman D R, Todd T A, Tillotson R D. Radiochimi. Acta, 2006, 94(5): 261-266

[39] Modolo G, Odoj R. Solv. Extr. Ion. Exch., 1999, 17(1): 33-53

[40] Modolo G, Odoj R. J. Alloys. Comp., 1998, 271/273: 248-251

[41] 许启初 (Xu Q C), 裴承新(Pei C X), 王世联(Wang S L), 金玉仁(Jin Y R), 张利兴(Zhang L X), 杨裕生 (Yang Y S). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2000, 22(4): 243-247

[42] 田国新 (Tain G X), 朱永 NFDB2 (Zhu Y J), 徐景明(Xu J M). 原子能科学技术(Atomic Energy Science and Technology), 2001, 35(S): 76-82

[43] Sherif Abdel H. H. N. Highly Selective Extraction System Based on Dithiophosphinic Acid: Experimental and the theoretical analysis of actinoide (Ⅲ)-separation. Schriften des Forschungszentrums Juelich, Germany. Reihe Energietechnik/Energy Technology, 2004, 29, 198

[44] Klaehn J R, Peterman D R, Harrup M K, Tillotson R D, Luther T A, Law J D, Daniels L M. Inorg. Chimi. Acta, 2008, 361: 2522-2532

[45] 王红敏 (Wang H M), 贾彩 (Jia C), 文明芬(Wen M F), 李保山 (Li B S), 陈靖 (Chen J). 核化学与放射化学(Journal of Nuclear and Raoliochemistry), 2010, 32(5): 280-282

[46] Jia C, Yu F X, Wang F, Wu W S, Chen J. Synthetic Communications, 2010, 40(14): 2036-2041

[47] Modolo G, Nabet S. Solv. Extr. Ion. Exch., 2005, 23(3): 359-373

[48] Ionova G, Ionov S, Rabbe C, Hill C, Madic C, Guillaumont R, Modolo G, Krupad J C. New J. Chem., 2001, 25: 491-501

[49] Peterman D R, Greenhalgh M R, Tillotson R D, Klaehn J R, Harrup M K, Luther T A, Law J D, Daniels L M. Separation of Minor Actinides from Lanthanides by Dithiophosphinic Acid Extractants. International Solvent Extraction Conference, ISEC2008, Tucson, Arizona, USA. Sep. 15-19, 2008. p1427-1432

[1] Liangrong Yang, Huifang Xing, Hongnan Qu, Jiemiao Yu, Huizhou Liu. External Field Enhanced Environmental Responsive Solid Extraction Technology [J]. Progress in Chemistry, 2019, 31(11): 1615-1622.
[2] Wu Yuxuan, Liu Ning, Ding Songdong. Water-Soluble Ligands Used in the Separation of Actinides and the Partitioning of Trivalent Lanthanides from Actinides [J]. Progress in Chemistry, 2014, 26(10): 1655-1664.
[3] Pan Dengfang, Ye Gang, Wang Fang, Chen Jing. Trivalent Actinides/Lanthanides Separation by Nitrogen Heterocyclic Ligands [J]. Progress in Chemistry, 2012, 24(11): 2167-2176.
[4] Ye Guoan, Zhang Hu. A Review on the Development of Spent Nuclear Fuel Reprocessing and Its Related Radiochemistry [J]. Progress in Chemistry, 2011, 23(7): 1289-1294.
[5] Chen Jing, Wang Jianchen. Overview of 30 Years Research on TRPO Process for Actinides Partitioning from High Level Liquid Waste [J]. Progress in Chemistry, 2011, 23(7): 1366-1371.
[6] Liu Zheng, Sun Lining, Shi Liyi, Zhang Dengsong. Near-Infrared Lanthanide Luminescence for Functional Materials [J]. Progress in Chemistry, 2011, 23(01): 153-164.
[7] . 3d-4f Single Molecule-Magnets [J]. Progress in Chemistry, 2010, 22(09): 1709-1719.
[8] Wang Kui Yang Xiaogai. Safety Issues of Lanthanides-Based Compounds as Diagnostic and Therapeutic Agents as Viewed from Cellular Inorganic Chemistry [J]. Progress in Chemistry, 2009, 21(05): 803-818.
[9] Zhu Bing,Zhao Daqing,Ni Jiazuan. Cleavage of Nucleic Acids by Lanthanides and Their Complexes [J]. Progress in Chemistry, 1998, 10(04): 395-.