中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (7): 1329-1337 Previous Articles   Next Articles

• Special issues •

Theoretical Studies on Fluorescence Spectra of Actinide Complexes

Su Jing, Li Jun*   

  1. Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
PDF ( 2034 ) Cited
Export

EndNote

Ris

BibTeX

In this mini-review, we have briefly summarized the experimental research on fluorescence spectra of actinide complexes, the electronic structures of actinyl complexes, and the basic principle for computational simulations of fluorescence spectra.Although numerous fluorescence spectroscopy data had been available experimentally, there were no theoretical investigations on vibrationally resolved fluorescence spectra of actinide complexes. Recently we have performed for the first time computational modeling of vibrationally resolved fluorescence spectra of uranyl complexes using Heller’s time-dependent theory for electronic spectroscopy. Herein reviewed are the theoretical results from computational chemistry modeling on the coordination structures, stabilization energies and fluorescence properties of uranyl-glycine-water complexes. Our research has shown that the vibrationally resolved electronic spectra and the unusually high intensity of the illustrious uranyl hot-band can be interpreted by combining state-of-the-art computational chemistry and contemporary experimental techniques. This integrated theory and experiment approach can lead to a detailed understanding of the geometries, energetics, and luminescence properties of actinide compounds, including those with bio-ligands.

Contents
1 Introduction
1.1 Actinide speciation
1.2 Fluorescence of actinide compounds
1.3 Theoretical studies of electronic spectra of actinides
2 Electronic structure of actinyl ions
3 Principles of fluorescence spectroscopy simulation
4 Computational study of uranyl-glycine-water complexes
4.1 Structure and stability
4.2 Thermodynamic properties
4.3 Fluorescence spectra simulation
5 Conclusions and outlook

CLC Number: 


[1] 王驹(Wang J). 中国核工业(China Nuclear Industry), 2008, 6: 16-19

[2] 刘春立(Liu C L). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2009, 31: 45-52

[3] Denecke M A. Coord. Chem. Rev., 2006, 250: 730-754

[4] 刘期凤(Liu Q F), 刘宁(Liu N), 廖家莉(Liao J L), 金建南(Jin J N). 化学研究与应用(Chemical Research and Application), 2006, 18(5): 465-471

[5] Szabó Z, Toraishi T, Vallet V, Grenthe I. Coord. Chem. Rev., 2006, 250: 784-815

[6] Geipel G. Coord. Chem. Rev., 2006, 250: 844-854

[7] Gibson J K, Marcalo J. Coord. Chem. Rev., 2006, 250: 776-783

[8] May C C, Worsfold P J, Keith-Roach M J. Trends in Analytical Chemistry, 2008, 27: 160-168

[9] Moulin C, Decambox P, Mauchien P. J. Radioanal. Nucl. Chem., 1997, 226: 135-138

[10] Billard I, Geipel G. Springer Ser Fluoresc, 2008, 5: 465-492

[11] Kimura T, Kato Y. J. Alloys. Comp., 1998, 271/273: 867-871

[12] Rabinowitch E, Belford R L. Spectroscopy and Photoechemisty of Uranyl Compounds. Oxford University Press, Oxford GB, 1964

[13] Bell J T, Biggers R E. J. Mol. Spectr., 1965, 18: 247-275

[14] Bell J T, Biggers R E. J. Mol. Spectr., 1968, 25: 312-329

[15] Eliet V, Bidoglio G, Omenetto N, Parma L, Grenthe I. J. Chem. Soc. Faraday. Trans., 1995,91: 2275-2285

[16] Kirishima A, Kimura T, Tochiyama O, Yoshida Z. Radiochim. Acta, 2004, 92: 889-896

[17] Karbowiak M, Hubert S, Fourest B, Moulin C. Radiochim. Acta, 2004, 9 2: 489-494

[18] Rutsch M, Geipel G, Brendler V, Bernhard G, Nitsche H. Radiochim. Acta, 1999, 86: 135-141

[19] Brachmann A, Geipel G, Bernhard G, Nitsche H Radiochim. Acta, 2002, 90: 147-149

[20] Koban A, Geipel G, Roβerg A, Bernhard G. Radiochim. Acta, 2004, 92: 903-908

[21] Günther A, Geipel G, Bernhard G. Polyhedron, 2007, 26: 59-65

[22] Günther A, Geipel G, Bernhard G. Radiochim. Acta, 2006, 94: 845-851

[23] Gtz C, Geipel G, Bernhard G. J. Radioanal. Nucl. Chem., 2011, 287: 961-969

[24] Wang Z, Zachara J M, Yantasee W,Gassman P L, Liu C, Joly A G. Environ. Sci. Technol., 2004, 38: 5591-5597

[25] Cao X, Dolg M. Coord. Chem. Rev., 2006, 250: 900-910

[26] Kaltsoyannis N. Chem. Soc. Rev., 2003, 32: 9-16

[27] Vallet V, Macak P, Wahlgren U, Grenthe I. Theor. Chem. Acc., 2006, 115: 145-16

[28] Zhang Z, Pitzer R M. J. Phys. Chem. A, 1999, 103: 6880-6886

[29] Matsika S, Pitzer R M. J. Phys. Chem. A, 2001, 105: 637-645

[30] Matsika S, Pitzer R M. J. Phys. Chem. A, 2000, 104: 4064-4068

[31] Matsika S, Pitzer R M. J. Phys. Chem. A, 2000,104: 11983-11992

[32] Wang Q, Pitzer R M. J. Phys. Chem. A, 2001, 105: 8370-8375

[33] Ruipérez F, Danilo C, Réal F, Flament J-P, Vallet V. J. Phys. Chem. A, 2009, 113: 1420-1428

[34] Hay P J, Martin R L, Schreckenbach G. J. Phys. Chem. A, 2000, 104: 6259-6270

[35] Infante I, Gomes A S P, Visscher L. J. Chem. Phys., 2006, 125: art. no. 074301

[36] Li J, Bursten B E. J. Am. Chem. Soc., 1998, 120: 11456-11466

[37] Kaltsoyannis N, Bursten B E. J. Organomet. Chem., 1997, 528: 19-33

[38] 肖海 (Xiao H), 李隽(Li J). 结构化学(Chin. J. Struct. Chem. ), 2008, 27: 967-974

[39] 胡憾石(Hu H S),吴国是(Wu G S),李隽(Li J). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2009, 31: 25-34

[40] Lyon J T, Hu H S, Andrews L, Li J. Proc. Nat. Acad. Sci. USA, 2007, 104: 18919-18924

[41] Li J, Hu H S, Lyon J T, Andrews L. Angew. Chem. Int. Ed., 2007, 46: 9045-9049

[42] Wei F, Wu G S, Schwarz W H E, Li J. Theor. Chem. Acc. 2011, 129: 467-481

[43] Wei F, Wu G S, Li J. J. Chem. Theo. Comp., 2011, in press.

[44] Su J, Li J. Abstract Book of Spectroscopic, Radioanalytical and Nuclear Methods for Security Applications, Pacifchem 2010, Hunululu, Hawaii, 2010

[45] Su J, Zhang K, Schwarz W H E, Li J. Inorg. Chem., 2011, 50: 2082-2093

[46] Dennin R G, Snellgrove T R, Woodwark D R. Mol. Phys., 1976, 32: 419-442

[47] Barker T J, Denning R G, Thorne Jonathan R G. Inorg. Chem., 1987, 26: 1721-1732

[48] Denning R G, Norris J O W,Brown D. Mol. Phy., 1982, 46: 287-323

[49] Denning R G, Norris J O W,Brown D. Mol. Phy., 1982, 46: 325-364

[50] Denning R G. J. Phys. Chem. A, 2007, 111: 4125-4143

[51] Pepper M, Bursten B E. Chem. Rev., 1991, 91: 719-741

[52] Wang Z, Zachara J M, Mckinley J P, Smith S G, Environ. Sci. Technol., 2005, 39: 2651-2659

[53] Tian G, Rao L, Teat S J, Liu G. . Chem. Eur. J., 2009, 15: 4172-4185

[54] Wilkerson M P, Berg J M, Hopkins T A, Dewey H J. J. Solid State Chem., 2005, 178: 584-588

[55] Wilkerson M P, Arrington C A, Berg J M, Scot B L. J. Alloys Comp., 2007, 444/5: 634-639

[56] Wilkerson M P, Berg J M. J. Phys. Chem. A, 2008, 112: 2515-2518

[57] Talbot-Eeckelaers C, Pope S J A, Hynes A J, Copping R, Jones C J, Taylor R J, Faulkner S, Sykes D, Livens F R, May I. J. Am. Chem. Soc., 2007, 129: 2442-2443

[58] Lee S Y, Heller E J. J. Chem. Phys., 1979, 71: 4777-4788

[59] Heller E J, Sundberg, R L, Tannor D. J. Phys. Chem., 1982, 86: 1822-1833

[60] Heller E J. Acc. Chem. Res., 1981, 14: 368-375

[61] Tannor D J, Heller E J. J. Chem. Phys., 1982, 77: 202-218

[62] Neese F, Petrenko T, Ganyushin D, Olbrich G. Coord. Chem. Rev., 2007, 251: 288-327

[63] Petrenko T, Neese F. J. Chem. Phys., 2007, 127: art. no. 164319

[64] Acosta A. Zink J I. J. Organomet. Chem., 1998, 554: 87-103

[65] Bailey S E, Eikey R A, Abu-Omar M M, Zink J I. Inorg. Chem., 2002, 41: 1755-1760

[66] Huang K, Rhys A. Proc. R. Soc. Lond., 1950, 204A: 406-423

[67] Heller E J. J. Chem. Phys., 1975, 62: 1544-1556

[68] Fonger W H, Struck C W. J. Chem. Phys., 1974, 60: 1994-2002

[69] ADF 2007. 01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam (http: //www. scm. com)

[70] Fonseca Guerra C, Snijders J G, te Velde G, Baerends E J. Theor. Chem. Acc., 1998, 99: 391-403

[71] te Velde G, Bickelhaupt F M, van Gisbergen S J A, Fonseca Guerra C, Baerends E J, Snijders J G, Ziegler T. J. Comp. Chem., 2001, 22: 931-967

[72] de Jong W A, Visscher L, Nieuwpoort W C. J. Mol. Struct. (Theochem), 1999, 458: 41-52

[73] Alcock N W, Flanders D J, Kemp T J, Shand M A. J. Chem. Soc. Dalton Trans., 1985, 517-521

[74] Keramidas A D, Rikkou M P, Drouza C, Raptopoulou C P, Terzis A, Pashalidis I. Radiochim. Acta, 2002, 90: 549-554

[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[4] Xiaoyang Liu. Condensed Matter Chemistry under High Pressure [J]. Progress in Chemistry, 2020, 32(8): 1184-1202.
[5] Yaoyang Liu, Zhibin Liu, Chuang Zhao, Yu Zhou, Yang Gao, Hui He. Separation of Actinides: Extraction Chemistry and Application of Unsymmetric Diglycolamides [J]. Progress in Chemistry, 2020, 32(2/3): 219-229.
[6] Xiaowang Chi, Qunyan Wu, Jipan Yu, Qin Zhang, Zhifang Chai, Weiqun Shi. Actinide-Heterobimetal Compounds [J]. Progress in Chemistry, 2019, 31(10): 1341-1349.
[7] Xiaofang Wang, Yin Hu, Qifa Pan, Ruilong Yang, Zhong Long, Kezhao Liu. Crystal Structure and Electronic Structure of Uranium Nitrides [J]. Progress in Chemistry, 2018, 30(12): 1803-1818.
[8] Wu Yuxuan, Liu Ning, Ding Songdong. Water-Soluble Ligands Used in the Separation of Actinides and the Partitioning of Trivalent Lanthanides from Actinides [J]. Progress in Chemistry, 2014, 26(10): 1655-1664.
[9] Luo Weiang, Jiang Binjie, Cheng Ling, Xu Yiting, Chen Xudong, Dai Lizong. Application of Fluorescent Probe Technique in Study of Polymer Self-Assembly [J]. Progress in Chemistry, 2013, 25(10): 1713-1725.
[10] Pan Dengfang, Ye Gang, Wang Fang, Chen Jing. Trivalent Actinides/Lanthanides Separation by Nitrogen Heterocyclic Ligands [J]. Progress in Chemistry, 2012, 24(11): 2167-2176.
[11] Liu Yajun. Computational Photochemistry [J]. Progress in Chemistry, 2012, 24(06): 950-956.
[12] Ma Yuchen, Liu Chengbu. Many-Body Green's Function Theory for the Study of Excited States [J]. Progress in Chemistry, 2012, 24(06): 981-1000.
[13] Ye Guoan, Zhang Hu. A Review on the Development of Spent Nuclear Fuel Reprocessing and Its Related Radiochemistry [J]. Progress in Chemistry, 2011, 23(7): 1289-1294.
[14] Linfeng Rao. Application of Thermodynamic and Spectroscopic Techniques to the Studies of Actinide Complexation [J]. Progress in Chemistry, 2011, 23(7): 1295-1307.
[15] Chen Piheng, Lai Xinchun, Wang Xiaolin. Progress in Theoretical Research of Metallic Plutonium and its Compounds [J]. Progress in Chemistry, 2011, 23(7): 1316-1321.