中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (7): 1308-1315 Previous Articles   Next Articles

• Special issues •

Application of Supercritical Fluid Extraction in Reprocessing of Spent Nuclear Fuel

Zhu Liyang, Wen Mingfen, Duan Wuhua, Xu Jingming*, Zhu Yongjun   

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 102201, China
  • Received: Revised: Online: Published:
PDF ( 1494 ) Cited
Export

EndNote

Ris

BibTeX

PUREX process is used in the reprocessing of spent nuclear fuel (SNF) for many years. But the operation of the process produces large volume of secondary waste and encounters difficulties in dealing with new type of spent nuclear fuel in the future, such as UO2 spent fuel with higher burn up and MOX (mixed oxide) spent fuel. Supercritical fluid extraction (SFE) as a novel non-aqueous technology has potential to use in nuclear industry. The current researches on application of SFE in nuclear industry include decontamination of solid radioactive waste, volume reduction of liquid radioactive waste and reprocessing of SNF. To use SFE in the reprocessing of SNF can simplify the process and reduce the secondary waste greatly. The reprocessing conceptual flow sheets based on supercritical fluid extraction are developed in Japan and Russia, which show promising prospect to be applied in the future. It is being investigated to use supercritical fluid extraction for the reprocessing of high temperature gas cooled reactor (HTGR) SNF in INET (Institute of Nuclear and New Energy Technology, Tsinghua University). The pebble fuel of HTGR is disintegrated by electrochemical intercalation method, and then the UO2 kernels are converted into nitrate by N2O4 and extracted by supercritical CO2 fluid containing TBP (tri-butyl phosphate). The recovery rate of uranium is 99.93%. The experimental results indicated the possibility of using electrochemical intercalation technology and SFE technology in reprocessing of HTGR spent nuclear fuel.

Contents
1 Introduction
2 Development trend of SNF reprocessing
2.1 Improvement of PUREX process
2.2 Development of pyrochemical process
3 Application of SFE in reprocessing
3.1 Principal of supercritical fluid extraction
3.2 Extraction of metal ions from solid matrix
3.3 Extraction of metal ions from aqueous solution
3.4 Direct extraction of actinide and lanthanide oxides
3.5 N2O4 nitration combined with SFE
3.6 Concept flow sheets of SNF reprocessing on SFE
4 R&D on reprocessing of HTGR SNF by SFE
4.1 Disintegration of pebble fuel of HTGR by electrochemical intercalation method
4.2 Supercritical fluid extraction of fuel kernel
5 Conclusion

CLC Number: 


[1] IAEA. Annual report 2009, GC(54)/4, 2009

[2] IAEA. Spent fuel reprocessing options. IAEA-TECDOC-1587, 2008

[3] Uhlir J, Marecek M J. Fluorine chemistry, 2009, 130: 89-93

[4] Toews K L, Shroll R M, Wai C M. Anal. Chem., 1995, 67: 4040-4043

[5] Syuichi I, Meguro Y, Yoshida Z. Chem. Lett., 1995, 365-366

[6] Sawada K, Tomioka O, Shimada T, Mori Y, Enokida Y, Yamamoto I. J. Nucl. Sci. Tech., 2006, 43(1): 98-102

[7] Kanekar A S, Pathak P N, Mohapatra P K, Manchanda V K. J. Radioanal. Nucl. Chem., 2010, 283(3): 789-796

[8] Trofimov T I, Samsonov M D, Lee S C, Smart N G, Wai C M. J. Chem. Technol. Biotechnol., 2001, 76: 1223-1226

[9] Kumar P, Pal A, Saxena M K, Ramakumar K L. Desalination, 2008, 232: 71-79

[10] Koh M, Yoo J, Park Y, Bae D, Park K, Kim H, Kim H. Ind. Eng. Chem. Res., 2006, 45: 5308-5313

[11] 欧阳应根(Ouyang Y G). 中国核工业(Zhong Guo He Gong Ye), 2006(6): 24-25

[12] 韩宾兵(Han B B). 清华大学硕士论文(Master Dissertation of Tsinghua University), 1996

[13] Jackson D P, Dormuth K W. Watching Brief on Reprocessing, Partitioning and Transmutation and Alternative Waste Management Technology -Annual Report 2008. NWMO TR-2008-22, 2008

[14] Takata T, Koma Y, Sato K, Kamiya M, Shibata A, Nomura K, Ogino H, Koyama T, Aose S. J. Nucl. Sci. Technol., 2004, 41(3): 307-314

[15] Drain F, Emin J L, Vinoche R, Baron P. WM’08, Phoenix, Arizona, 2008

[16] Chandler J, Hertel N. Prog. Nucl. Energy., 2009, 51: 701-708

[17] Uhlir J. Proc. 5th OECD/NEA Int. Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, Mol, Belgium, 1998

[18] 周贤玉(Zhou X Y). 核燃料后处理工程(Engineering for Nuclear Fuel Reprocessing). 哈尔滨: 哈尔滨工程大学出版社(Harbin: Harbin Engineering University Press), 2009

[19] Ogata S, Homma S, Sasahira A, Kawamura F, Koga J, Matsumoto S. J. Nucl. Sci. Technnol., 2004, 41(2): 135-141

[20] 欧阳应根(Ouyang Y G). 中国核科技报告(China Nuclear Science and Technology Report ), 2001, 367-381

[21] 刘学刚(Liu X G). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2009, 31(suppl.): 36-41

[22] OECD/NEA. Pyrochemical separations in nuclear applications. A status report. NEA No. 5427, 2004

[23] Ashraf-Khorassani M, Combs M T, Taylor L T. J. Chromatography A, 1997, 774: 37-49

[24] 赵东胜(Zhao D S), 刘桂敏(Liu G M), 吴兆亮(Wu Z L).天津化工(Tianjin Chemical Industry), 2007, 21(3): 10-12

[25] Wai C M, Wang S F. J. Biochem. Biophysical Methods, 2000, 43: 273-293

[26] Wai C M, Wang S F. J. Chromatography A, 1997, 785: 369-383

[27] Laintz K E, Wai C M, Yonker C R, Smith R D. Anal. Chem., 1992, 64: 2875-2878

[28] 苏宝根(Su B G). 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2007

[29] Wang S F. Doctoral Dissertation of University of Idaho, 2004

[30] Kumar P, Rao A, Ramakumar K L. Radiochim. Acta, 2009, 97(2): 105-112

[31] Fox R V, Mincher B J, Spectrum 2002, Reno, NV, 2002

[32] Meguro Y, Iso S, Yoshida Z. Anal. Chem.,1998, 70: 1262-1267

[33] Baaden M, Schurhammer R, Wippff G. J. Phys. Chem. B, 2002, 106: 434-441

[34] Lin Y H, Smart N G, Wai C M. Environ. Sci. Technol., 1995, 29(10): 2706 -2708

[35] Mekki S, Wai C M, Billard I, Moutiers G, Burt J, Yoon B, Wang J S, Gaillard C, Ouadi A, Hesemann P. Chem. Eur. J., 2006, 12: 1760-1766

[36] Wang S F, Sheaff C N, Yoon B, Addleman R S, Wai C M. Chem. Eur. J., 2009, 15: 4458-4463

[37] Lin Y H. Doctoral Dissertation of University of Idaho, 1997

[38] Samsonov M D, Trofimov T I, Kulyako Y M, Myasoedov B F. Radiochemistry, 2007, 49(3): 246-250

[39] Tomioka O, Meguro Y, Enokida Y, Yamamoto I, Yoshida Z. J. Nucl. Sci. Technol., 2001, 38(12): 1097-1102

[40] Sawada K, Uruga K, Koyama T, Shimada T, Mori Y, Enokida Y, Yamamoto I. J. Nucl. Sci. Technol., 2005, 42(3): 301-304

[41] Trofimov T I, Samsonov M D, Kulyako Y M, Myasoedov B F. C. R. Chim., 2004, 7(12): 1209-1213

[42] Shadrin A, Murzin A, Lumpov A, Romanovsky V. Solvent Extr. Ion Exch., 2008, 26(6): 797-806

[43] Zhu L Y, Duan W H, Xu J M, Zhu Y J. Chin. J. Chem. Eng., 2009, 17(2): 214-218

[44] Fox R V, Ball R D, Harrington P, Rollins H W, Jolley J J, Wai C M. J. Supercrit. Fluid, 2004, 31(3): 273-286

[45] Fox R V. Doctoral Dissertation of University of Idaho, 2003

[46] Buchikhin E P, Kuznetsov A Y, Vidanov V L, Shatalov V V. Radiochemistry, 2006, 48(5): 409-411

[47] Sawada K, Hirabayashi D, Enokida Y. Prog. Nucl. Energy, 2008, 50: 483-486

[48] Gibson G, Katz J J. J. Am. Chem. Soc., 1951, 73(11): 5436-5438

[49] Swada K, Hirahayashi D, Enokida Y. Global 2007, Boise, Idaho, 2007. 1518-1522

[50] Bondin V V, Bychkov S I, Efremov I G, Revenko Y A, Babain V A, Murzi A A, Romanovsky V N, Fedorov Y S, Shadrin A Y, Ryabkova N V. Global 2007, Boise, Idaho, 2007. 1523-1529

[51] Shadin A, Babain V, Kamachev V, Murzin A, Shafikov D, Dormidonova A. ISEC 2008, Tucson, Arizona, 2008. 647-652

[52] Bondin V V, Bychkov S I, Revenko Y A, Efremov I G, Murzin A A, Shadrin A Y, Babain V A, Romanovskii V N, Kudryavtsev E G. Radiochemistry, 2008, 50(3): 253-255

[53] Smart N G, Wai C M, Phelps C. Chem. Britain, 1998, 34: 34-36

[54] Shimada T, Ogumo S, Ishihara N, Kosaka Y, Mori Y. J. Nucl. Sci. Technol., 2002, (supplement 3): 757-760

[55] Enokida Y, Sawada K, Shimada T, Yamamoto I. Global 2007, Boise, Idaho, 2007. 1029-1032

[56] Shimada T, Ogumo S, Ishihara N, Enokida Y, Yamamoto I. Trans. At. Energy Soc. Jpn., 2007, 6(2): 214-224

[57] Suyama K, Shimada T, Ishihara N, Kuroda K, Mori Y, Ishida Y. Global 2009. Paris, 2009: 166-171

[58] Wai C M. ACS Symposium Series 933, 2006. 57-70

[59] Shadrin A, Murzin A, Romanovsky V, Bychkov S, Revenko Y. Global 2005, Tsukuba, 2005, paper No.128

[60] 吴宗鑫(Wu Z X), 张作义(Zhang Z Y). 先进核能系统和高温气冷堆(Advanced Nuclear Energy System and High Temperature Gas-Cooled Reactor). 北京: 清华大学出版社 (Beijing: Tsinghua University Press), 2004

[61] Del Cul G D, Spencer B B, Forsberg C W, Collins E D. Triso-coated fuel processing to support high-temperature gas-cooled reactors. ORNL/TM-2002/156, Oak Ridge National Laboratory, 2002

[62] Sorokina N E, Maksimova N V, Avdeev V V. Neorganicheskie Materialy, 2001, 37(4): 441-447

[63] Merz E. Kerntechnik, 1970, 12(8): 341-346

[64] Tian L F, Wen M F, Li L Y, Chen J. Electrochim. Acta, 2009, 54(28): 7313-7317

[65] Zhu L Y, Duan W H, Xu J M, Zhu Y J. Ind. Eng. Chem. Res., 2010, 49(20): 11195-11199

[1] Wei Yuezhou. Progress and Discussion on Chemical Separation Technologies for Nuclear Fuel Reprocessing Abroad [J]. Progress in Chemistry, 2011, 23(7): 1272-1288.
[2] Ye Guoan, Zhang Hu. A Review on the Development of Spent Nuclear Fuel Reprocessing and Its Related Radiochemistry [J]. Progress in Chemistry, 2011, 23(7): 1289-1294.
[3] Shi Weiqun, Zhao Yuliang, Chai Zhifang. A Preview of Nano-Materials and Nano-Technologies Applied in Advanced Nuclear Energy System [J]. Progress in Chemistry, 2011, 23(7): 1478-1484.