中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (7): 1295-1307 Previous Articles   Next Articles

• Special issues •

Application of Thermodynamic and Spectroscopic Techniques to the Studies of Actinide Complexation

Linfeng Rao   

  1. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
  • Received: Revised: Online: Published:
PDF ( 1211 ) Cited
Export

EndNote

Ris

BibTeX

Complexation of actinide elements with various ligands has become a subject of significant interest in recent years, due to the rapid development of nuclear energy and the demand for advanced actinide separation processes. Some ligands play very important roles in actinide separations, while other ligands determine the speciation of actinides and their transport in the environment. Therefore, fundamental understanding of actinide complexation is critical to the development of advanced fuel cycles, including the used fuel reprocessing and the safe management of nuclear wastes. A number of thermodynamic and spectroscopic techniques can be applied to the studies of actinide complexation in solution, providing fundamental information on the nature (e.g., ionic bonding vs covalency, outer sphere vs inner sphere), energetics (e.g., free energy, enthalpy, entropy and heat capacity) and structures of actinide complexes. This paper briefly reviews the application of selected thermodynamic and spectroscopic techniques that have been frequently used in recent years for studying actinide complexation, including microcalorimetry, optical absorption and fluorescence spectroscopy, and X-ray absorption spectroscopy. Emphasis is placed on demonstrating, with examples, the scientific information that can be extracted from the measurements with the techniques.

CLC Number: 


[1] Puigdomenech I, Plyasunov A V, Rard J A, Grenthe I. Temperature corrections to thermodynamic data and enthalpy calculations. in “Modeling in Aquatic Chemistry” (Eds., Grenthe I, Puigdomenech I). NEA/OECD, Paris, 1997, Chapter X, and references therein

[2] Rao L, Tian G, Srinivasan T G, Zanonato P, Di Bernardo P. J. Solution Chem., 2010, 1888-1897

[3] Tian G, Rao L. Inorg. Chem., 2009, 48: 6748-6754

[4] Di Bernardo P, Zanonato P, Tian G, Tolazzi M, Rao L. J. Chem. Soc. Dalton Trans., 2009, 23: 4450-4457

[5] Rao L, Tian G, Xia Y, Friese J I. J. Thermal Analysis and Calorimetry, 2009, 95 (2): 409-413

[6] Rao L, Zhang Z, Zanonato P, Di Bernardo P, Bismondo A, Clark S B. J. Chem. Soc. Dalton Trans., 2004, 2867-2872

[7] Rao L, Srinivasan T G, Garnov A Y, Zanonato P, Di Bernardo P, Bismondo A. Geochim. Cosmochim. Acta, 2004, 68: 4821-4830

[8] Zanonato P, Di Bernardo P, Bismondo A, Liu G, Chen X, Rao L. J. Am. Chem, Soc., 2004, 126: 5515-5522

[9] Rao L, Garnov A Y, Jiang J, Di Bernardo P, Zanonato P, Bismondo A. Inorg. Chem., 2003, 42 (11): 3685-3692

[10] Jiang J, Rao L, Di Bernardo P, Zanonato P, Bismondo A. J. Chem. Soc. Dalton Trans., 2002, 1832-1836

[11] Hansen L D, Lewis E A, Eatough D J. Instrumentation and Data Reduction. in Analytical Solution Chemistry, (Ed. Grime K). John Wiley & Sons, Inc., 1985, Chapter 3

[12] Eatough D J, Lewis E A, Hansen L D. Determination of ΔHR and Keq Values. in Analytical Solution Chemistry (Ed. Grime K), John Wiley & Sons, Inc., 1985, Chapter 5

[13] Blandamer M J, Cullis P M, Gleeson P T. Chem. Soc. Rev., 2003, 32: 264-267

[14] Rao L. Chem. Soc. Rev., 2007, 36 (6): 881-892

[15] Rao L, Zanonato P, Di Bernardo P, Bismondo A. J. Chem. Soc. Dalton Trans., 2001, 1939-1944

[16] Rao L, Zanonato P, Di Bernardo P, Bismondo A. Inorg. Chim. Acta, 2000, 306: 49-64

[17] Rao L, Tian G, Xia Y, Friese J I. Thermodynamics of neptunium(Ⅴ) fluoride and sulfate at elevated temperatures. Proceedings of the 11th International High-Level Radioactive Waste Management Conference (IHLRWM), April 30-May 4, 2006, Las Vegas, Nevada. pp.374-378

[18] Rao L, Tian G, Xia Y, Friese J I. J. Thermal Analysis and Calorimetry, 2009, 95 (2): 409-413

[19] Morss L R, Edelstein N M, Fuger J. The Chemistry of the Actinides and Transactinide Elements, Vol. 1- 5. Springer, 2006

[20] Rao L, Tian G. Symmetry, 2010, 2(1): 1-14

[21] Gans P, Sabatini A, Vacca A. Talanta, 1996, 43: 1739-1753 (also website: http://www.hyperquad.co.uk/)

[22] Rao L, Choppin G R, Bergeron R J. Radiochim. Acta, 2000, 88: 851-856

[23] Choppin G R, Rao L, Rizkalla E N, Sullivan J C. Radiochim. Acta, 1992, 57: 173

[24] (a) Matsika S, Pitzer R M, Reed D T. J. Phys. Chem. A, 2000, 104: 11983-11992; (b) Matsika S, Pitzer R M. J. Phys. Chem. A, 2000, 104: 4064-4068

[25] (a) Krot N N, Bessonov A A, Perminov V P. Dokl. Akad. Nauk SSSR, 1990, 312: 1402-1404. (b) Bessonov A A, Afonas'eva T V, Krot N N. Soviet Radiochemistry, 1990, 32: 453-457. (c) Bessonov A A, Afonas'eva T V, Krot N N. Soviet Radiochemistry, 1991, 33: 245-250. (d) Grigor'ev M S, Baturin N A, Bessonov A A, Krot N N. Radiochemistry, 1995, 37: 12-14. (e) Garnov A Y, Krot N N, Bessonov A A, Perminov V P. Radiochemistry, 1996, 38: 402-406

[26] Tananaev G. Soviet Radiochemistry, 1990, 32: 476-479

[27] Tian G, Xu J, Rao L. Angew. Chem. Int. Ed., 2005, 44: 6200-6203

[28] Tian G, Rao L, Oliver A. Chem. Commun., 2007, 4119-4121

[29] Tian G, Rao L, Teat S J. Inorg. Chem., 2009, 48: 10158-10164

[30] Tian G, Rao L. Dalton Trans., 2010, 39: 9866-9871

[31] Rao L, Tian G. Dalton Trans., 2011, 40 (4): 914-918

[32] Horrocks W D Jr, Sudnick D R. J. Am. Chem. Soc., 1979, 101: 334-340

[33] Beitz J V, Radiochim. Acta, 1991, 52/53: 35-39

[34] Kimura T, Choppin G R, Kato Y, Yoshida Z. Radiochim. Acta, 1996, 72: 61-64.

[35] Tian G, Edelstein N M, Rao L. J. Phys. Chem. A, 2011, 115 (10): 1933-1938.

[36] Bünzli J C G, Wessner D. Coord. Chem. Rev., 1984, 60: 191-253

[37] Barthelemy P P, Choppin G R. Inorg. Chem., 1989, 28: 3354-3357

[38] Tian G, Martin L R, Rao L. Inorg. Chem., 2010, 49: 10598-10605

[39] Metcalf D H, Dai S, Del Cul G D, Toth L M. Inorg. Chem., 1995, 34: 5573-5577

[40] Liu G K, Chen X Y, Huang J. Mol. Phys., 2003, 101: 1029-1036

[41] Tian G, Rao L, Teat S J, Liu G. Chemistry, a European Journal, 2009, 15: 4172-4181

[42] Stohr J. NEXAFS Spectroscopy. Berlin: Springer-Verlag, 1992

[43] Shuh D K. Speciation, Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources, OECD NEA Workshop Proceedings, Karlsruhe, Germany, Sept. 2006, (2007)

[44] Nilsson H J, Tyliszczak T, Wilson R E, Werme L, Shuh D K. J. Anal. Bioanal. Chem., 2005, 383: 41-47

[45] Denecke M A, Reich T, Pompe S, Bubner M, Heise K H, Nitsche H, Allen P G, Bucher J J, Edelstein N M, Shuh D K. J. de Physique IV, 1997, 7: 637-638

[46] Arhland S. Solvation and Complex formation in Protic and Aprotic Solvents. in The Chemistry of Nonaqueous Solvents (Ed. Lagowsky J J). New York: Academic Press, 1978,1-62

[47] Nash K L, Gelis A V, Jensen M P, Bond A H, Sullivan J C, Rao L, Garnov A. Nuclear Science and Technology, 2002, (Supplement 3): 512-515

[1] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[2] Zhijun Pan, Wei Zhuang, Hongfei Wang. Dynamic Vibrational Spectroscopy in Condensed Matter Chemistry: Theory and Techniques [J]. Progress in Chemistry, 2020, 32(8): 1203-1218.
[3] Quanchao Zhuang, Zi Yang, Lei Zhang, Yanhua Cui. Research Progress on Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 761-791.
[4] Tingting Gu, Jian Gu, Yu Zhang, Hua Ren. Metal Borohydride-Based System for Solid-State Hydrogen Storage [J]. Progress in Chemistry, 2020, 32(5): 665-686.
[5] Shiying Yang, Yichao Xue, Manqian Wang. Complexed Heavy Metal Wastewater Treatment: Decomplexation Mechanisms Based on Advanced Oxidation Processes [J]. Progress in Chemistry, 2019, 31(8): 1187-1198.
[6] Chang Liu, Feng Wu, Qianqian Su, Weiping Qian. Template Preparation and Application in Biological Detection of Porous Noble Metal Nanostructures [J]. Progress in Chemistry, 2019, 31(10): 1396-1405.
[7] Chuang Yao, Xi Zhang, Yongli Huang, Lei Li, Zengsheng Ma, Changqing Sun. Perspective: Structures and Properties of Liquid Water [J]. Progress in Chemistry, 2018, 30(8): 1242-1256.
[8] Jin Zhang, Wensheng Cai, Xueguang Shao. New Algorithms for Calibration Transfer in Near Infrared Spectroscopy [J]. Progress in Chemistry, 2017, 29(8): 902-910.
[9] Yu Yin*, Zhuangzhuang Zhang, Dan Xu, Zhihao Wen, Zhifeng Yang, Aihua Yuan. π Complexation Adsorbents Based on Porous Materials:Preparation and Application [J]. Progress in Chemistry, 2017, 29(6): 628-636.
[10] Qing Mao*, Weiyun Jing, Yue Shi. Basic Principles and Applications of Nonlinear Spectroscopy Analysis in Electrochemistry [J]. Progress in Chemistry, 2017, 29(2/3): 210-215.
[11] Guohua Xu, Conggang Li, Maili Liu. NMR Study of Protein Structure and Function in Cell-Like Environment [J]. Progress in Chemistry, 2017, 29(1): 75-82.
[12] Li Chao, Fan Meiqiang, Chen Haichao, Chen Da, Tian Guanglei, Shu Kangying. Thermodynamics and Kinetics Modifications on the Li-Mg-N-H Hydrogen Storage System [J]. Progress in Chemistry, 2016, 28(12): 1788-1797.
[13] Fan Mengli, Zhao Yue, Liu Yan, Cai Wensheng, Shao Xueguang. Aquaphotomics of Near Infrared Spectroscopy [J]. Progress in Chemistry, 2015, 27(2/3): 242-250.
[14] Tian Zhimei, Liu Wangdan, Cheng Longjiu. Progress of the Experimental and Theoretical Studies on Aum(SR)n Clusters [J]. Progress in Chemistry, 2015, 27(12): 1743-1753.
[15] Yang Chuting, Han Jun, Luo Yangming, Hu Sheng, Wang Xiaolin. Metal Ion Recognition Functions Based on Cyclopeptides [J]. Progress in Chemistry, 2014, 26(09): 1537-1550.