中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (6): 1196-1210 Previous Articles   Next Articles

• Review •

Preparation of Micro-/Nano- Nonspherical Polymer Particles

Li Hongfu1,2, Zhang Boming1*, Guo Xinglin2*   

  1. 1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
    2. State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
PDF ( 1648 ) Cited
Export

EndNote

Ris

BibTeX

Precisely shaped polymer particles are widely used for various applications, especially in the design of new carriers for drug delivery, micro- or nano- nonspherical polymer particles exhibit more obvious advantages to their corresponding spherical particles, such as in the drug release, in vivo transportation, circulation, targeting ability, the swallow speed by the cells, and the adhesion behavior on in vascular wall. If we can prepare the nonspherical particles with specific shape for the drug carriers it will greatly enhance in vivo therapy efficiency. But in the particle research field, until now, spherical system research is in the dominate position, so it’s necessary to summarize the preparation methods of the micro- or nano- nonspherical polymer particles. In this review, 14 preparation methods (microfluidics, stretching of spherical particles, porous silica, template and particles self-assembly, particle replication in nonwetting templates, reactive ion etching, electrospray, ion beam irradiation, controlled phase separation in seeded polymerization, miniemulsion polymerization, local surface modification at the Interface, amphiphilic macromolecule self-assembly, oil-in-water emulsion solvent evaporation technique, Y-shape surfactant) as well as their advantages and disadvantages of micro- or nano- nonspherical polymer particles are introduced in detail. These methods could be joined up to prepare more complex shapes.

CLC Number: 

[1] Lu Y, Yin Y, Xia Y. Adv. Mater., 2001, 13: 415-420
[2] Stolnik S, Illum L, Davis S S. Advanced Drug Delivery Reviews, 1995, 16: 195-214
[3] Langer R, Tirrell D A. Nature, 2004, 428: 487-492
[4] Champion J A, Katare Y K, Mitragotri S. Proc. Natl. Acad. Sci. USA., 2007, 104(29): 11901-11904
[5] Champion J A, Katare Y K, Mitragotri S. J. Control Release, 2007, 121: 3-9
[6] Simone E A, Dziubla T D, Muzykantov V R. Expert Opin. Drug Delivery, 2008, 5 (12): 1283-1300
[7] Hsieh D S T, Rhine W D, Langer R. J. Pharm. Sci., 1983, 72 (1): 17-22
[8] Decuzzi P, Ferrari M. Biomaterials, 2006, 27: 5307-5314
[9] Geng Y, Dalhaimer P, Cai S S, Tsai R, Tewari M, Minko T, Discher D E. Nat. Nanotechnol., 2007, 2(4): 249-255
[10] Simone E A, Dziubla T D, Discher D E, Muzykantov V R. Biomacromolecules, 2009, 10: 1324-1330
[11] Muro S, Garnacho C, Champion J A, Leferovich J, Gajewski C, Schuchman E H, Mitragotri S, Muzykantov V R. Mol. Ther., 2008, 16(8): 1450-1458
[12] Frojmovic M M, Milton J G. Physiol. Rev., 1982, 62: 185-261
[13] Champion J A, Mitragotri S. PNAS, 2006, 103(13): 4930-4934
[14] Gratton S E A, Ropp P A, Pohlhaus P D, Luft J C, Madden V J, Napier M E, DeSimone J M. PNAS, 2008, 105(33): 11613-11618
[15] Gavze E, Shapiro M. J. Fluid Mech., 1998, 371: 59-79
[16] Dendukuri D, Tsoi K, Hatton T A, Doyle P S. Langmuir, 2005, 21(6): 2113-2116
[17] Xu S Q, Nie Z H, Seo M, Lewis P, Kumacheva E, Stone H A, Garstecki P, Weibel D B, Gitlin I, Whitesides G M. Angew. Chem. Int. Ed. Engl., 2005, 44(5): 724-728
[18] Anna S L, Bontoux N, Stone H A. Appl. Phys. Lett., 2003, 82: 364-366
[19] Dendukuri D, Pregibon D C, Collins J, Hatton T A, Doyle P S. Nat. Mater., 2006, 5(5): 365-369
[20] Kobayashi I, Uemura K, Nakajima M. Langmuir, 2006, 22: 10893-10897
[21] Ho C C, Keller A, Odell J A, Hatton T A, Doyle P S. Colloid Polym. Sci., 1993, 271(5): 469-479
[22] Lu Y, Yin Y D, Xia Y N. Adv. Mater., 2001, 13: 271-274
[23] Mohraz A, Solomon M J. Langmuir, 2005, 21: 5298-5306
[24] Xu C Y, Wang Q, Xu H F. Colloid Polym. Sci., 2007, 285: 1471-1478
[25] Kim J Y, Yoon S B, Kooli F, Yu J S. J. Mater. Chem., 2001, 11: 2912-2914
[26] Sozzani P, Bracco S, Comotti A, Simonutti R, Valsesla P, Sakamoto Y, Terasaki O. Nat. Mater., 2006, 5(7): 545-551
[27] Velev O D, Lenhoff A M, Kaler E W. Science, 2000, 287(5461): 2240-2243
[28] Yin Y D, Xia Y N. Adv. Mater., 2001, 13(4): 267-271
[29] Sung K E, Vanapalli S A, Mukhija D, McKay H A, Millunchick J M, Burns M A, Solomon M J. J. Am. Chem. Soc., 2008, 130: 1335-1340
[30] Manoharan V N, Elsesser M T, Pine D J. Science, 2003, 301(5632): 483-487
[31] Rolland J P, Maynor B W, Euliss L E, Exner A E, Denison G M, DeSimone J M. J. Am. Chem. Soc., 2005, 127(28): 10096-10100
[32] Powell H M, Lannutti J J. Langmuir, 2003, 19: 9071-9078
[33] Choi D G, Yu H K, Jang S G, Yang S M. J. Am. Chem. Soc., 2004, 126: 7019-7025
[34] Zheng Y B, Wang Y H, Wang S J, Huan C H A. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 277: 27-36
[35] Almería B, Deng W W, Fahmy T M, Gomez A. Journal of Colloid and Interface Science, 2010, 343: 125-133
[36] Tsukuda S, Seki S, Sugimoto M, Tagawa S. Surface and Coatings Technology, 2007, 201: 8526-8530
[37] Mock E B, Bruyn H D, Hawkett B S, Gilbert R G, Zukoski C F. Langmuir, 2006, 22: 4037-4043
[38] Kim J W, Larsen R J, Weitz D A. Adv. Mater., 2007, 19: 2005-2009
[39] Okubo M, Miya T, Minami H, Tskekoh R. Journal of Applied Polymer Science, 2002, 83: 2013-2021
[40] Wang D N, Dimonie V L, Sudol E D, El-Aasser M S. Journal of Applied Polymer Science, 2002, 84: 2710-2720
[41] Okubo M, Fujibayashi T, Yamada M, Minami H. Colloid Polym. Sci., 2005, 283: 1041-1045
[42] Okubo M, Takekoh R, Suzuki A. Colloid Polym. Sci., 2002, 280: 1057-1061
[43] Okubo M, Fujibayashi T, Terada A. Colloid Polym. Sci., 2005, 283: 793-798
[44] Fujibayashi T, Okubo M. Langmuir, 2007, 23: 7958-7962
[45] Qiang W L, Wang Y L, He P, Xu H, Gu H C, Shi D L. Langmuir, 2008, 24: 606-608
[46] Lu W, Chen M, Wu L M. Journal of Colloid and Interface Science, 2008, 328: 98-102
[47] Liu B, Wei W, Qu X Z, Yang Z Z. Angew. Chem. Int. Ed., 2008, 47: 3973-3975
[48] Hong L, Jiang S, Granick S. Langmuir, 2006, 22: 9495-9499
[49] Fujimoto K, Nakahama K, Shidara M, Kawaguchi H. Langmuir, 1999, 15: 4630-4635
[50] Ge X P, Wang M Z, Yuan Q, Wang H, Ge X W. Chem. Commun., 2009, 2765-2767
[51] Zhang H W, Bei J Z, Wang S G. Biomaterials, 2009, 30: 100-107
[52] Heslinga M J, Mastria E M, Eniola-Adefeso O. Journal of Controlled Release, 2009, 138: 235-242
[53] Wang X Y, Liu W J, Wang X B, Zhang Z C, Liu H R. Materials Letters, 2007, 61: 4478-4481
[54] Busuttil K. Materials Today, 2007, 10(9): 15-15
[55] Xia Y N, Whitesides G M. Angew. Chem. Int. Ed., 1998, 37: 551-575
[56] Rolland J P, Van Dam R M, Schorzman D A, Quake S R, DeSimone J M. J. Am. Chem. Soc., 2004, 126: 8349-8349
[57] Haynes C L, Van Duyne R P. J. Phys. Chem. B, 2001, 105: 5599-5611
[58] Hulteen J C, Treichel D A, Smith M T, Duval M L, Jensen T R, Van Duyne R P. J. Phys. Chem. B, 1999, 103: 3854-3863
[59] Yi D K, Kim D Y. Chem. Commun., 2003, 982-983
[60] Egitto F D, Matienzo L J. IBM J. Res. Dev., 1994, 38: 423-439
[61] Nakamatsu J, Delgado-Aparicio L F, Da Silva R, Soberon F. J Adhes. Sci. Technol., 1999, 13 : 753-761.
[62] He Q G, Liu Z C, Xiao P F, Liang R Q, He N Y, Lu Z H. Langmuir, 2003, 19: 6982-6986
[63] Shenoy S L, Bates W D, Frisch H L, Wnek G E. Polymer, 2005, 46: 3372-3384
[64] Xie J W, Lim L K, Phua Y Y, Hua J S, Wang C H. J. Colloid Interface Sci., 2006, 302: 103-112
[65] Yao J, Lim L K, Xie J W, Hua J S, Wang C H. J. Aerosol. Sci., 2008, 39 : 987-1002
[66] Hong Y L, Li Y Y, Yin Y Z, Li D M, Zou G T. J. Aerosol. Sci., 2008, 39: 525-536
[67] Hogan C J Jr, Yun K M, Chen D R, Lenggoro I W, Biswas P, Okuyama K. Colloids Surf. A, 2007, 311: 67-76
[68] Lenggoro I W, Hata T, Iskandar F, Lunden M M, Okuyama K. J. Mater. Res., 2000, 15: 733-743
[69] Okuyama K, Lenggoro I W. Chem. Eng. Sci., 2003, 58: 537-547
[70] Vehring R, Foss W R, Lechuga-Ballesteros D. J. Aerosol. Sci., 2007, 38: 728-746
[71] Park C H, Lee J. J. Appl. Poly. Sci., 2009, 114: 430-437
[72] Matsumoto T, Okubo M, Shibao S. Kobunshi Ronbunshu, 1976, 33: 575-583
[73] Okubo M, Katsuta Y, Yamada A, Matsumoto T. Kobunshi Ronbunshu, 1979, 36: 459-464
[74] Cho I, Lee K W. J. Appl. Polym. Sci., 1985, 30: 1903-1926
[75] Okubo M, Ando M, Yamada A, Katsuta Y, Matsumoto T. J. Polym. Sci. Polym. Lett. Ed., 1981, 19: 143-147
[76] Okubo M, Kanaida K, Matsumoto T. Colloid Polym. Sci., 1987, 265: 876-881
[77] Durant Y G, Sundberg D C. Macromolecules, 1996, 29: 8466-8472
[78] Chou Y J, El-Aasser M S, Vanderhoff J W. J. Dispersion Sci. Technol., 1980, 1: 129-150
[79] Perro A, Reculusa S, Ravaine S, Bourgeat-Lami E, Duguet E. J. Mater. Chem., 2005, 15: 3745-3760
[80] Zhao Y, Liang H J, Wang S G, Wu C. J. Phys. Chem. B, 2001, 105(4): 848-851
[81] McGinity J W, O'Donnell P B. Adv. Drug Deliv. Rev., 1997, 28(1): 25-42
[82] Eniola A O, Hammer D A. J. Control. Release, 2003, 87: 15-22
[83] Matijevic E. Langmuir, 1994, 10: 8-16

[1] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[4] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[5] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[6] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[7] Suqian Fu, Ying Wang, Kai Liu, Junhui He. Fabrication and Applications of Micro/Nano-Porous Polymer Films [J]. Progress in Chemistry, 2022, 34(2): 241-258.
[8] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[9] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[10] Jinhua Liao, Jiajun Gao, Yuchao Wang, Wei Sun. Preparation and Application of Micro-Structured Elastomer Dielectric Layer [J]. Progress in Chemistry, 2021, 33(6): 975-987.
[11] Ximeng Cheng, Qingrui Zhang. Functional Protein Based Nanomaterials for Environmental Protection Application [J]. Progress in Chemistry, 2021, 33(4): 678-688.
[12] Yue Li, Yamei Lu, Pengfei Wang, Yingze Cao, Chun’ai Dai. Preparation and Application of Transparent Superhydrophobic Materials [J]. Progress in Chemistry, 2021, 33(12): 2362-2377.
[13] Yun Lu, Jingpeng Li, Yan Zhang, Guorui Zhong, Bo Liu, Huiqing Wang. Wood-Derived Carbon Functional Materials [J]. Progress in Chemistry, 2020, 32(7): 906-916.
[14] Xiaojian Li, Haijun Zhang, Saisai Li, Jun Zhang, Quanli Jia, Shaowei Zhang. Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties [J]. Progress in Chemistry, 2020, 32(6): 851-860.
[15] Lijun Guo, Rui Li, Jianxin Liu, Qing Xi, Caimei Fan. Study on Hydrogen Evolution Efficiency of Semiconductor Photocatalysts for Solar Water Splitting [J]. Progress in Chemistry, 2020, 32(1): 46-54.