中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (6): 1181-1188 Previous Articles   Next Articles

• Review •

Nonisocyanate Polyurethanes and Their Applications

Huang Yaocheng1, Liang Liyun1, Ren Xu2, Tan Bien1*   

  1. 1. Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. Shenzhen Tianxudong Keji Co., Ltd, Shenzhen 518172, China
  • Received: Revised: Online: Published:
PDF ( 2257 ) Cited
Export

EndNote

Ris

BibTeX

Polyurethane (PU) is one of the most important polymer materials due to its excellent properties, such as durability, impact resistance, stress relaxation, tear resistance and adhesion. However, isocyanate, which is a key monomer for conventional PU, has some drawbacks such as high toxicity and sensitivity to moisture. Also, urethane group is poorly resistant to hydrolysis.The reaction between cyclic carbonates and primary amines is a promising nonisocyanate route to produce PU. Nonisocyanate polyurethanes (NIPUs) produced by this method are more resistant to hydrolysis and have better mechanical properties due to the formation of intramolecular hydrogen bonds within the hydrourethane groups. In this paper, the formation mechanism of NIPUs is introduced. The synthesis methods of cyclic carbonate group and its catalyst systems are summarized. The progress of synthesis of cyclic carbonate oligomers and NIPUs as well as their applications are reviewed. Also, the reasons why NIPUs have not yet been widely commercially available and the research prospects are discussed.

CLC Number: 

[1] Shalati M D, McBee J H, DeGooyer W J, Thys F, van der Ven L, Leijzer R T M. Prog. Org. Coat., 2003, 48(2/4): 236-250
[2] 霍 W ·K, 卡皮诺 L ·A, 克罗耶M ·V, 鲁特J ·M, 汤姆科R ·F. CN 1729260, 2006
[3] 周庆丰( Zhou Q F ), 潘明旺( Pan M W ), 袁金凤( Yuan J F ), 张留成( Zhang L C ). 化学通报( Chemistry ), 2006, 69: 1-9
[4] Kihara N, Hara N, Endo T. J. Org. Chem., 1993, 58(23): 6198-6202
[5] Kihara N, Kushida Y, Endo T. J. Polym. Sci., Part A: Polym. Chem., 1996, 34(11): 2173-2179
[6] Steblyanko A, Choi W, Sanda F, Endo T. J. Polym. Sci., Part A: Polym. Chem., 2000, 38(13): 2375-2380
[7] Ochiai B, Inoue S, Endo T. J. Polym. Sci., Part A: Polym. Chem., 2005, 43(24): 6282-6286
[8] Garipov R M, Sysoev V A, Mikheev V V, Zagidullin A I, Deberdeev R Y, Irzhak V I, Berlin A A. Dokl. Phys. Chem., 2003, 393(1): 289-292
[9] Clements J H. Ind. Eng. Chem. Res., 2003, 42(4): 663-674
[10] North M, Pasquale R. Angew. Chem. Int. Ed., 2009, 48(16): 2946-2948
[11] Meléndez J, North M, Pasquale R. Eur. J. Inorg. Chem., 2007, 2007(21): 3323-3326
[12] 任旭( Ren X ). CN 101584994, 2009
[13] Shim H L, Udayakumar S, Yu J I, Kim I, Park D W. Catal. Today, 2009, 148(3/4): 350-354
[14] 亢茂青( Kang M Q ), 李振荣( Li Z R ), 赵雨花( Zhao Y H ), 王军威( Wang J W ), 王心葵( Wang X K ). CN 101260232, 2008
[15] Türün O, Kayaman-Apohan N, Kahraman M V, Mencelo lu Y, Güngr A. J. Sol-Gel Sci. Technol., 2008, 47(3): 290-299
[16] 谭必恩( Tan B E ), 黄耀成( Huang Y C ), 梁丽芸( Liang L Y ), 任旭( Ren X ). CN 101775137, 2010
[17] Figovsky O L, Shapovalov L D. 26th FATIPEC Congress. Dresden: 2002, 325-332
[18] Stroganov I V, Stroganov V F. Polym. Sci. Ser. C, 2007, 49(3): 258-263
[19] Tomita H, Sanda F, Endo T. J. Polym. Sci., Part A: Polym. Chem., 2001, 39(6): 851-859
[20] Kim M R, Kim H S, Park D W, Lee J K. React. Kinet. Catal. Lett., 2001, 72(2): 373-381
[21] Paddock R L, Nguyen S T. J. Am. Chem. Soc., 2001, 123(46): 11498-11499
[22] Sun J, Fujita S I, Arai M. J. Organomet. Chem., 2005, 690(15): 3490-3497
[23] Xiao L F, Li F W, Xia C G. Appl. Catal. A: Gen., 2005, 279(1/2): 125-129
[24] Lee E H, Ahn J Y, Dharman M M, Park D W, Park S W, Kim I. Catal. Today, 2008, 131(1/4): 130-134
[25] Kiso Y, Matsunaga Y, Imagawa M. US 4880942, 1989
[26] 袁中顺( Yuan Z S ), 汪猛( Wang M ), 刘成学( Liu C X ), 顾尧( Gu Y ), 贺文媛( He W Y ). CN 101367933, 2009
[27] Tamami B, Sohn S, Wilkes G L. J. Appl. Polym. Sci., 2004, 92(2): 883-891
[28] Javni I, Doo P H, Petrovic Z S. J. Appl. Polym. Sci., 2008, 108(6): 3867-3875
[29] Doll K M, Erhan S Z. Green Chem., 2005, 7(12): 849-854
[30] Kim M R, Kim H S, Ha C S, Park D W, Lee J K. J. Appl. Polym. Sci., 2001, 81(11): 2735-2743
[31] Suzuki A, Nagai D, Ochiai B, Endo T. J. Polym. Sci., Part A: Polym. Chem., 2004, 42(23): 5983-5989
[32] Ohrbom W H, December T S, Harris P J. US 5856382, 1999
[33] Figovsky O L, Shapovalov L D. US 7232877 B2, 2007
[34] Park H Y, Lee D W, Lee H S, Lim D O, Park D W. React. Kinet. Catal. Lett., 2003, 79(2): 245-255
[35] Ochiai B, Hatano Y, Endo T. J. Polym. Sci., Part A: Polym. Chem., 2009, 47(12): 3170-3176
[36] O'Brien J L, Beavers E M, Park E. US 2979514, 1961
[37] Jana S, Yu H, Parthiban A, Chai C L L. J. Polym. Sci., Part A: Polym. Chem., 2010, 48(7): 1622-1632
[38] Golden J H, Chew B G M, Zax D B, DiSalvo F J, Frechet J M J, Tarascon J M. Macromolecules, 1995, 28(9): 3468-3470
[39] Webster D C, Crain A L. Prog. Org. Coat., 2000, 40(1/4): 275-282
[40] Han L, Park S-W, Park D-W. Energy Environ. Sci., 2009, 2(12): 1286-1292
[41] Zhu Z, Einset A G, Yang C-Y, Chen W-X, Wnek G E. Macromolecules, 1994, 27(15): 4076-4079
[42] Rokicki G, Kowalczyk T, Glinski M. Polym. J., 2000, 32(5): 381-390
[43] Al-Azemi T F, Bisht K S. Polymer, 2002, 43(8): 2161-2167
[44] Miyagawa T, Shimizu M, Sanda F, Endo T. Macromolecules, 2005, 38(19): 7944-7949
[45] Darensbourg D J, Moncada A I. Macromolecules, 2010, 43(14): 5996-6003
[46] Tomita H, Sanda F, Endo T. J. Polym. Sci., Part A: Polym. Chem., 2001, 39(6): 860-867
[47] Tomita H, Sanda F, Endo T. J. Polym. Sci., Part A: Polym. Chem., 2001, 39(1): 162-168
[48] Whelan J M, Cotter R J. US 3072613, 1963
[49] Huo L, Li T, Guo J. J. Macromol. Sci., Pure Appl. Chem., 2010, 47(5): 457-460
[50] Ochiai B, Satoh Y, Endo T. J. Polym. Sci., Part A: Polym. Chem., 2009, 47(18): 4629-4635
[51] Tomita H, Sanda F, Endo T. Macromolecules, 2001, 34(22): 7601-7607
[52] Li Z, Zhao Y, Yan S, Wang X, Kang M, Wang J, Xiang H. Catal. Lett., 2008, 123(3): 246-251
[53] Parzuchowski P G, Jurczyk-Kowalska M, Ryszkowska J, Rokicki G. J. Appl. Polym. Sci., 2006, 102(3): 2904-2914
[54] 任旭( Ren X ). CN 101812175, 2009
[55] 刘晓国( Liu X G ), 黄禹( Huang Y ). 广州大学学报(自然科学版) ( Journal of Guangzhou University, Natural Science Edition ), 2010, 9(9): 36-40
[56] Figovsky O L, Shapovalov L D. Polymers and Adhesives in Microelectronics and Photonics. Potsdam: Institute of Electrical and Electronics Engineers Inc., 2001, 257-264
[57] Webster D C, Su C H J, Foster C H. US 5567527, 1996
[58] Ramesh S, Lessek P, Bremser W. US 6403709, 2002
[59] Yang L, Ruhoff P J, Hung R, Stenson P. WO 97/23516, 1997
[60] Ochiai B, Satoh Y, Endo T. Green Chem., 2005, 7: 765-767
[61] Webster D C. US 6339129, 2002
[62] Ohrbom W H, Herrel P A. US 6812300, 2004

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[4] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[5] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[8] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[9] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[10] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[11] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[12] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[13] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[14] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[15] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.