中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (6): 1123-1136 Previous Articles   Next Articles

• Review •

Synthesis of Porphyrin-Fullerene Complexes

Yang Shengyan1,2*, Wu Zhenyi2, Wan Xinjun1, Yan Juan1   

  1. 1. Department of Chemistry and Material Science, Chaohu College, Chaohu 238000, China;
    2. Department of Chemistry, Xiamen University, Xiamen 361005, China
  • Received: Revised: Online: Published:
PDF ( 1210 ) Cited
Export

EndNote

Ris

BibTeX

Fullerenes have been found to make good acceptors, due to their unique three-dimensional structure and remarkably withdrawing electron. Porphyrins are frequently used as ideal donors for their π conjugate structure and plentiful π electron . Also, they are good photosensitizers, and having widely absorbability in UV-Vis region. Porphyrin-fullerene complexes become currently active fields as the property of mimics of the natural photosynthetic recation centers and photoinduced electron transfer. This material is hopeful to be applied in photovoltaic cells and solar cells. In accordance with the different ways to connect porphyrin and fullerene, porphyrin-fullerene complexes can be divided into two types: covalently linked and non-covalently linked. Covalently linked porphyrin-fullerene complexes are synthesized mainly through cycloaddition reactions, such as the 1,3-dipolar cycloaddition reaction, Diels-Alder cycloaddition reaction and Bingel-Hirsch cycloaddition reaction. Non-covalently linked porphyrin-fullerene complexes are obtained maily through the axial coordination of metal and the hydrogen bonding. This review covers the recent progress in synthesis of different types of porphyrin-fullerene complexes, including the synthesis and application prospects of covalently linked porphyrin-fullerene compounds, existing problems in synthetic methods and further prospects in this field.

CLC Number: 

[1] D’Souza F, Deviprased G R, EI-Khouly M E, Fujitsuka M, Ito O. J. Am. Chem. Soc., 2001, 123(22): 5277-5284
[2] Luo C, Guldi D M, Imahori H, Tamaki K, Sakata Y. J. Am. Chem. Soc., 2000, 122(28): 6535-6551
[3] Graja A, Olejniczak I, Bogucki A, Bonifazi D, Diederich F. Chem. Phys., 2004, 300(1/3): 227-232
[4] Imahori H. Org. Biomol. Chem., 2004, 2: 1425-1433
[5] Liddell P A, Sumida J P, MacPherson A N, Noss L, Seely G R, Clark K N, Moore A L, Moore T A, Gust D. Photochem. Photobiol., 1994, 60(6): 537-541
[6] Meijer M D, Van Klink G P M, Van Koten G. Good. Chem. Rev., 2002, 230: 141-163
[7] Fungo F, Otero L A, Sereno L, Silber J J, Durantini E N. Dyes and Pigments, 2001, 50(3): 163-170
[8] Maggini M, Scorrano G, Prato M. J. Am. Chem. Soc., 1993, 115(21): 9798-9799
[9] Drovetskaya T, Reed C A, Boyd P. Tetrahedron Letters, 1995, 36(44): 7971-7974
[10] Lembo A, Tagliatesta P, Guldi D M, Wielopolski M, Nuccetelli M. J. J. Phys. Chem. A, 2009, 113(9): 1779-1793
[11] Lembo A, Tagliatesta P, Guldi D M. J. Phys. Chem. A, 2006, 110(40): 11424-11434
[12] Tkachenko N V, Lemmetyinen H, Sonoda J, Ohkubo K, Sato T, Imahoti H, Fukuzumi S. J. Phys. Chem. A, 2003, 107(42): 8834-8844
[13] Imahori H, Tkachenko N V, Vehmanen V, Tamaki K, Lemmetyinen H, Sakata Y, Fukuzumi S. J. Phys. Chem. A, 2001, 105(10): 1750-1756
[14] Milanesio M E, Durantini E N. Synth. Commun., 2006, 36(15): 2135-2144
[15] D’Souza F, Gadde S, Islam D-M S, Wijesinghe C A, Schumacher A L, Zandler M E, Araki Y, Ito O. J. Phys. Chem. A, 2007, 111(35): 8552-8560
[16] Fazio M A, Lee O P, Schuster D I. Org. Lett., 2008, 10(21): 4979-4982
[17] Shiga T, Motohiro T. Thin Solid Films, 2008, 516(6): 1204-1208
[18] Lembo A, Tagliatesta P, Cicero D, Leoni A, Salvatori A. Org. Biomol. Chem., 2009, 7: 1093-1096
[19] 汪磊(Wang L). 天津大学博士论文(Doctoral Dissertation of Tianjin University), 2009
[20] 杨森根(Yang S G), 刘见永(Liu J Y), 吴振奕(Wu Z Y), 田玲(Tian L), 凡素华(Fan S H), 詹梦熊(Zhan M X), 高等学校化学学报(Chemical Journal of Chinese Universities), 2005, 26(7): 1202-1205
[21] 凡素华(Fan S H), 杨森根(Yang S G), 吴振奕(Wu Z Y), 陈昕(Chen X), 詹梦熊(Zhan M X), 无机化学学报(Chinese Journal of Inorganic Chemistry), 2006, 22(7): 1299-1302
[22] 杨森根(Yang S G), 刘见永(Liu J Y), 吴振奕(Wu Z Y), 凡素华(Fan S H), 詹梦熊(Zhan M X), 高等学校化学学报(Chemical Journal of Chinese Universities), 2006,, 27(12): 2248-2251
[23] Koichi T, Hiroshi, Yoshinobu N, Iwao Y, Yoshiteru S. Chem. Commun., 1999, 625-626
[24] Liddel P A, Kodis G, Kuciauskas D, Andreasson J, Moore A L, Moore T A, Gust D. Phys. Chem., 2004, 6: 5509-5515
[25] Burrell A K, Campbell W, Officer D L. Tetrahedron Lett., 1997, 38(7): 1249-1252
[26] Li Y J, Gan Z H, Wang N, He X R, Li Y L, Wang S, Liu H B, Araki Y, Ito O, Zhu D B. Tetrahedron, 2006, 62(18): 4285-4293
[27] Ghiggino K P, Hutchison J A, Islan D-M S, Araki Y, Ito O, Langford S J, Lau V L, Takezaki M. Photochem. Photobol. Sci., 2006, 5: 1150-1153
[28] Fujitsuka M, Ito O, Yamashiro T, Aso Y, Otsubo T. J. Phys. Chem. A, 2000, 104(21): 4876-4881
[29] Fujitsuka M, Matsumoto K, Ito O, Yamashiro T, Aso Y, Otsubo T. Res. Chem. Intermed., 2001, 27(1-2): 73-88
[30] Van Hal P A, Knol J, Langeveld-Voss B M W, Meskers S C J, Hummelen J C, Janssen R A. J. Phys. Chem. A, 2000, 104(25): 5974-5988
[31] Ikemoto J, Takimiya K, Aso Y, Otsubo T, Fujitsuka M, Ito O. Organic Letters, 2002, 4(3): 309-311
[32] Yamashiiro T, Aso Y, Otsubo T, Tang H, Harima Y, Yamashita K. Chem. Lett., 1999, 443-444
[33] Lindsey J S, Schreiman I C, Hsu H C, Kearney P C, Marguerettaz A M. J. Org. Chem., 1987, 52(5): 827-836
[34] Prato M, Maggini M. Acc. Chem. Res., 1998, 31(9): 519-526
[35] Tanihara J, Ogawa K, Kobuke Y. J. Photoch. Photobio. A: Chem., 2006, 178(2/3): 140-149
[36] Drobizhev M, Karotki A, Kruk M, Rebane A. Chem. Phys. Lett., 2002, 355(1/2): 175-182
[37] Imahori H. Bull. Chem. Soc. Jpn., 2007, 80(04): 621-636
[38] Imahori H, Hagiwara K, Akiyama T, Taniguchi S, Okada T, Sakata Y. Chem. Lett., 1995, 24(4): 265-266
[39] Imahori H, Hagiwara K, Aoki M, Akiyama T, Taniguchi S, Okada T, Shirakawa M, Sakata Y. J. Am. Chem. Soc., 1996, 118(47): 11771-11782
[40] Imahori H, Sakata Y. Eur. J. Org. Chem., 1999, 1999(10): 2445-2457
[41] Bingel C. Chem. Ber., 1993, 126(8): 1957-1959
[42] Bourgeois J P, Diederich F, Echegoyen L, Nierengarten J F. Helv. Chim. Acta, 1998, 81(10): 1835-1844
[43] Nierengarten J F, Herrmann A, Tykwinski R R, Riittimann M, Diederich F, Boudon C, Gisselbrecht J P, Gross M. Helv. Chim. Acta, 1997, 80(1): 293-316
[44] MacMahon S, Fong R, Baran P S, Safonov I, Wilson S R, Schuster D I. J. Org. Chem. 2001, 66(16): 5449-5455
[45] El-Khouly M E, Araki Y, Ito O, Gadde S, McCarty A L, Karr P A, Zandler M E, D’Souza F. Chem. Chem. Phys . 2005, 7: 3163-3171
[46] Schuster D I, MacMahon S, Guldi D M, Echegoyen L, Braslavsky S E. Tetrahedron, 2006, 62(9): 1928-1936
[47] Sutton L R, Scheloske M, Pirner K S, Hirsch A, Guldi D M, Gisselbrecht J P. J. Am. Chem. Soc., 2004, 126(33): 10370-10381
[48] Safonov I G, Baran P S, Schuster D I. Tetrahedron Lett., 1997, 38(47): 8133-8136
[49] Urbani M, Nierengarten J F. Tetrahedron Lett., 2007, 48(46): 8111-8115
[50] Schlundt S, Kuzmanich G, Spanig F, Kovacs C, Garcia M A, Guldi D M, Hirsch A. Chem. Eur. J., 2009, 15(45): 12223-12233
[51] Guldi D M, Luo C, Ros T D, Prato M, Dietel E, Hirsch A. Chem. Commun., 2000, 375-376
[52] D’Souza F, Rath N P, Deviprasad G R, Zandler M E. Chem. Commun., 2001, 267-268
[53] D’Souza F, EI-Khouly M E, Gadde S, McCarty A L, Karr P A, Zandler M E, Araki Y, Ito O. J. Phys. Chem. B, 2005, 109(20): 10107-10114
[54] Yin G, Xu D P, Xu Z. Chemical Physics Letters, 2002, 365(3/4): 232-236
[55] Mateo-Alonso A, Sooambar C, Prato M. Org. Biomol. Chem., 2006, 4: 1629-1637
[56] D’Souza F, Gadde S, Schumacher A L, Zandler M E, Sandanayaka A S D, Araki Y, Ito O. . J. Phys. Chem. C, 2007, 111(29): 11123-11130
[57] Xiang Y, Wei X W, Zhang X M, Wang H L, Wei X L, Hu J P, Yin Gui, Xu Z. Inorganic Chemistry Communications, 2006, 9(5): 452-455
[58] Boyd P D W, Reed, C A. Acc. Chem. Res., 2005, 38(4): 235-242
[59] D’Souza F, Subbaiyan N K, Xie Y S, Hill J P, Ariga K, Ohkubo K, Fukuzumi S, J. Am. Chem. Soc., 2009, 131(44), 16138-16146
[60] Xie Y S, Hill J P, Schumacher A L, Sandanayaka A S D, D’Souza F, J. Phys. Chem. C, 2008, 112(28): 10559-10572
[61] D’Souza F, Venukadasula G M, Yamanaka K I, Subbaiyan N K, Zandler M E, Ito O. Org. Biomol. Chem., 2009, 7(6): 1076-1080

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[4] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[5] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[6] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[7] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[8] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[9] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[10] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[11] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Jun Dong, Jiaxi Xu. An Overview on the Synthesis and Reactions of Sulfines [J]. Progress in Chemistry, 2022, 34(5): 1088-1108.
[14] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[15] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
Viewed
Full text


Abstract

Synthesis of Porphyrin-Fullerene Complexes