中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (6): 1060-1068 Previous Articles   Next Articles

• Review •

Optical Manipulation and Application by Three Dimensional Colloidal Photonic Crystals

Li Heng1, Wang Jingxia2, Wang Rongming1*, Song Yanlin2*   

  1. 1. Key Laboratory of Micro-nano Measurement-Manipulation and Physics, Ministry of Education, Physics Department, Beijing University of Aeronautics and Astronautics, Beijing 100191;
    2. Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
PDF ( 2179 ) Cited
Export

EndNote

Ris

BibTeX

Manipulation of photons has become the core studies in area of photonics in the 21th century. Colloidal photonic crystals (CPC), with the characteristic of photonic stopband due to their periodic structures, can control the propagation of light in a certain direction, which show applications in optics, electronics, catalysis, display, detection and so on. Furthermore, CPC can offer the guidance for designing structures and optimizing propertied of optical functional materials. In this paper, the recent achievements on applications in this field are presented from two aspects. On the one hand, the optical manipulation of photonic crystals is based on changing the stopband characteristics through variation of the refractive index or the lattice constant by applying external stimuli, which provides a promising strategy to develop the technology in chemical sensors and biosensors. On the other hand, the optical behavior can be effectively controlled based on emitters embedded in PCs, which promotes the development of optical devices. Finally, this paper brings forward perspectives toward in-depth investigation of colloidal photonic crystals.

CLC Number: 

[1] Yablonovitch E. Phys. Rev. Lett., 1987, 58(20): 2059-2062
[2] John S. Phys. Rev. Lett., 1987, 58(23): 2486-2489
[3] Tarhan I I, Watson G H. Phys. Rev. Lett., 1996, 76(2): 315-318
[4] Wang Z L, Chan C T, Zhang W Y, Chen Z, Ming N B, Sheng P. Phys. Rev. E, 2003, 67: art. no. 016612
[5] 段廷蕊(Duan T R), 李海华(Li H H), 孟子晖(Meng Z H), 刘烽(Liu F), 都明君(Du M J). 化学通报(Chemistry), 2009, 72 (4): 298
[6] Chen J I L, von Freymann G, Choi S Y, Kitaev V, Ozin G A. J. Mater. Chem., 2008, 18 (4): 369-373
[7] Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S. Appl. Phys. Lett., 1999, 74 (10): 1370-1372
[8] Notomi M. Physical Review B, 2000, 62 (16): 10696-10705
[9] Weissman J M, Sunkara H B, Tse A S, Asher S A. Science, 1996, 274 (5289): 959-960
[10] Lee K, Asher S A. J. Am. Chem. Soc., 2000, 122(39): 9534-9537
[11] Fudouzi H, Xia Y N. Adv. Mater., 2003, 15(11): 892-896
[12] Debord J D, Eustis S, Debord S B, Lofye M T, Lyon L A. Adv. Mater., 2002, 14(9): 658-662
[13] Arsenault A C, Clark T J, Von Freymann G, Cademartiri L, Sapienza R, Bertolotti J, Vekris E, Wong S, Kitaev V, Manners I, Wang R Z, John S, Wiersma D, Ozin G A. Nat. Mater., 2006, 5(3): 179-184
[14] Ozaki M, Shimoda Y, Kasano M, Yoshino K. Adv. Mater., 2002, 14(7): 514-518
[15] Ge J P, Hu Y X, Yin Y D. Angew. Chem. Int. Ed., 2007, 46(39): 7428-7431
[16] Tian E T, Wang J X, Zheng Y M, Song Y L, Jiang L, Zhu D B. J. Mater. Chem., 2008, 18(10): 1116-1122
[17] Li H L, Wang J X, Yang L M, Song Y L. Adv. Funct. Mater., 2008, 18 (20): 3258-3264
[18] Li H L, Chang L X, Wang J X, Yang L M, Song Y L. J. Mater. Chem., 2008, 18(42): 5098-5103
[19] Xu L, Wang J X, Song Y L, Jiang L. Chem. Mater., 2008, 20(11): 3554-3556
[20] Purcell E M. Phys. Rev., 1946, 69: 681-681
[21] Yablonovitch E, Gmitter T J. Phys. Rev. Lett., 1989, 63(18): 1950-1953
[22] Martorell J, Lawandy N M. Phys. Rev. Lett., 1990, 65(15): 1877-1880
[23] Wang X H, Wang R Z, Gu B Y, Yang G Z. Phys. Rev. Lett., 2002, 88(9): art. no. 093902
[24] Schriemer H P, van Driel H. M, Koenderink A F, Vos W L. Phys. Rev. A, 2000, 63(1): art. no. 011801
[25] Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D L, Vos W L. Nature, 2004, 430(7000): 654-657
[26] Bechger L, Lodahl P, Vos W L. J. Phys. Chem. B, 2005, 109(20): 9980-9988
[27] Maskaly G R, Petruska M A, Nanda J, Bezel I V, Schaller R D, Htoon H, Pietryga J M, Klimov V I. Adv. Mater., 2006, 18(3): 343-347
[28] de Dood M J A, Polman A, Fleming J G. Phys. Rev. B, 2003, 67(11): art. no. 115106
[29] Ganesh N, Zhang W, Mathias P C, Chow E, Soares J, Malyarchuk V, Smith A D, Cunningham B T. Nature Nanotechnology, 2007, 2(8): 515-520
[30] Blum C, Mosk A P, Nikolaev I S, Subramaniam V, Vos W L. Small, 2008, 4 (4): 492-496
[31] Jensen J B, Hoiby P E, Emiliyanov G, Bang O, Pedersen L H, Bjarklev A. Opt. Express, 2005, 13(15): 5883-5889
[32] Kim H J, Kim S, Jeon H, Ma J, Choi S H, Lee S, Ko C, Park W. Sensors and Actuators B-Chemical, 2007, 124(1): 147-152
[33] 刘兆斌(Liu Z B), 赵祥伟(Zhao X W), 张帅(Zhang S), 顾忠泽(Gu Z Z). 化学学报(Acta Chimica Sinica), 2008, 66(2): 229-233
[34] Li J L, Zhao X W, Wei H M, Gu Z Z, Lu Z H. Anal. Chim. Acta, 2008, 625(1): 63-69
[35] Li J, Zhao X W, Zhao Y J, Hu J, Xu M, Gu Z Z. J. Mater. Chem., 2009, 19(36): 6492-6497
[36] Li M Z, He F, Liao Q, Liu J, Xu L, Jiang L, Song Y L, Wang S, Zhu D B. Angew. Chem. Int. Ed., 2008, 47(38): 7258-7262
[37] Ye J Y, Ishikawa M, Yamane Y, Tsurumachi N, Nakatsuka H. Appl. Phys. Lett., 1999, 75 (23): 3605-3607
[38] Zhang Y Q, Wang J X, Ji Z Y, Hu W P, Jiang L, Song Y L, Zhu D B. J. Mater. Chem., 2007, 17(1): 90-94
[39] Li M Z, Liao Q, Liu Y, Li Z Y, Wang J X, Jiang L, Song Y L. Applied Physics A-Materials Science & Processing, 2010, 98(1): 85-90
[40] Andrew P, Barnes W L. Science, 2004, 306(5698): 1002-1005
[41] Li M Z, Liao Q, Zhang J P, Jiang L, Song Y L, Zhu D B, Chen D, Tang F Q, Wang X H. Appl. Phys. Lett., 2007, 91(20): art. no. 203516
[42] Li H, Wang J X, Lin H, Xu L, Xu W, Wang R M, Song Y L, Zhu D B. Adv. Mater., 2010, 22(11): 1237-1241
[43] Furumi S, Fudouzi H, Miyazaki H. T, Sakka Y. Adv. Mater., 2007, 19(16): 2067-2072
[44] Shkunov M N, Vardeny Z V, DeLong M C, Polson R C, Zakhidov A A, Baughman R H. Adv. Funct. Mater., 2002, 12(1): 21-26
[45] Lawrence J R, Ying Y R, Jiang P, Foulger S H. Adv. Mater., 2006, 18 (3): 300-303
[46] Jin F, Song Y, Dong X Z, Chen W Q, Duan X M. Appl. Phys. Lett., 2007, 91(3): art. no. 031109
[47] Yamada H, Nakamura T, Yamada Y, Yano K. Adv. Mater., 2009, 21 (41): 4134-4138
[48] Braun P V, Wiltzius P. Nature, 1999, 402(6762): 603-604
[49] Johnson S A, Ollivier P J, Mallouk T. E. Science, 1999, 283 (5404): 963-965
[50] Chen J I L, von Freymann G, Choi S Y, Kitaev V, Ozin G A. Adv. Mater., 2006, 18(14): 1915-1919
[51] Liu J, Li M Z, Wang J X, Song, Y L, Jiang L, Murakami T, Fujishima A. Environ. Sci. Technol., 2009, 43(24): 9425-9431
[52] Liu J, Liu G L, Li M Z, Shen W Z, Liu Z Y, Wang J X, Zhao J C, Jiang L, Song Y L. Energy & Environmental Science, 2010, 3(10): 1503-1506
[53] Nishimura S, Abrams N, Lewis B A, Halaoui L I, Mallouk T E, Benkstein K D, van de Lagemaat J, Frank A J. J. Am. Chem. Soc., 2003, 125(20): 6306-6310
[54] Mihi A, Miguez H. J. Phys. Chem. B, 2005, 109 (33): 15968-15976
[55] Mihi A, Lopez-Alcaraz F J, Miguez H. Appl. Phys. Lett., 2006, 88(19): art. no. 193110
[56] Huisman C L, Schoonman J, Goossens A. Sol. Energy Mater. Sol. Cells, 2005, 85(1): 115-124
[57] Wang D Y, Mhwald H. Adv. Mater., 2004, 16(3): 244-247
[58] Mihi A, Ocana M, Miguez H. Adv. Mater., 2006, 18(17): 2244-2249
[59] Cui L Y, Zhang Y Z, Wang J X, Ren Y B, Song Y L, Jiang L. Macromol. Rapid. Commun., 2009, 30(8): 598-603.

[1] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[2] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[3] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[4] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[5] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[6] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[7] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[8] Yang Wang, Po Hu, Shuai Zhou, Jiajun Fu. Anticounterfeiting and Security Applications of Rare-Earth Upconversion Nanophosphors [J]. Progress in Chemistry, 2021, 33(7): 1221-1237.
[9] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[10] Shijia Li, Ernan Pang, Caihong Hao, Tingting Cai, Shengliang Hu. Preparation of Solid-State Fluorescent Carbon Dots [J]. Progress in Chemistry, 2020, 32(5): 548-561.
[11] Yuehua Yuan, Yongjun Zhu, Wei Hu, Jun Qin, Maozhong Tian, Feng Feng. Double Recognition Fluorescence Probes for Copper and Mercury Ions Based on Small Molecules [J]. Progress in Chemistry, 2019, 31(4): 550-560.
[12] Yang Shen, Jiwen Hu, Tingting Liu, Hongwen Gao, Zhangjun Hu. Colorimetric and Fluorogenic Chemosensors for Mercury Ion Based on Nanomaterials [J]. Progress in Chemistry, 2019, 31(4): 536-549.
[13] Xiaofu Wu, Hui Tong, Lixiang Wang. Fluorescent Polymer Materials for Detection of Explosives [J]. Progress in Chemistry, 2019, 31(11): 1509-1527.
[14] Cheng Chen, Zhiqiang Dong, Haowen Chen, Yang Chen, Zhigang Zhu, Weiheng Shih. Two-Dimensional Photonic Crystals [J]. Progress in Chemistry, 2018, 30(6): 775-784.
[15] Daiwen Pang, Zhiliang Chen, Shasha Lv, Yi Lin*, Zhiling Zhang, Daiwen Pang. Metal-Enhanced Fluorescence from Quantum Dots [J]. Progress in Chemistry, 2017, 29(8): 814-823.