中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (6): 1050-1059 Previous Articles   Next Articles

• Invited Article •

Substituted Vanadium-Oxide Clusters

Gao Yuanzhe1,2, Hu Changwen1*, Li Xiaofang1*   

  1. 1. Key Laboratory of Cluster Science, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China;
    2. College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050016, China
  • Received: Revised: Online: Published:
PDF ( 1164 ) Cited
Export

EndNote

Ris

BibTeX

Vanadium-oxide clusters are one class of the most important polyoxometalates. The design and assembly of polyoxovanadates (POVs) are currently of great interest in the field of crystal engineering, not only because of their structural diversity, but also their potential applications in the fields of catalytic, magnetic and optical materials. To date, a brand-new class of POVs with the incorporation of main group elements into vanadium-oxide clusters has been widely investigated. In recent years, transition-metal complexes (TMCs) are utilized to combine with different substituted vanadium-oxide clusters for the construction of various novel structural types with desired properties, which not only greatly enriched the structure of vanadium-oxide clusters, but also promoted its continuous development in the synthesis. A review has been mainly given to the new development of the substituted vanadium-oxide clusters in the aspects of structural characteristics and magnetic properties over the past several years. The prospects of them are also discussed in this paper.

CLC Number: 

[1] Pope M T. Heteropoly and Isopoly Oxometalates. New York: Springer-Verlag, 1983. 31-32
[2] 王恩波(Wang E B), 胡长文(Hu C W), 许林(Xu L). 多酸化学导论(Introduction in Polyoxometalates). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 1998. 184-201
[3] Sun C Y, Liu S X, Liang D D, Shao K Z, Ren Y H, Su Z M. J. Am. Chem. Soc., 2009, 131: 1883-1888
[4] Zhao J W, Zhang J, Zheng S T, Yang G Y. Chem. Commun., 2008, 570-572
[5] Wang J P, Duan X Y, Du X D, Niu J Y. Gryst. Growth. Des., 2006, 6: 2266-2270
[6] Long D L, Burkholder E, Cronic L. Chem. Soc. Rev., 2007, 36: 105-121
[7] 王恩波(Wang E B), 李阳光(Li Y G), 鹿颖(Lu Y), 王新龙(Wang X L). 多酸化学概论(Introduction in Polyoxometalates). 长春: 东北师范大学出版社(Changchun: Northeast Normal University Press), 2009. 119-125
[8] Chen L, Jiang F L, Lin Z Z, Zhou Y F, Yue C Y, Hong M C. J. Am. Chem. Soc., 2005, 127: 8588-8589
[9] Calzado C J, Clemente-Juan J M, Coronado E, Gaita-Arino A, Suaud N. Inorg. Chem., 2008, 47: 5889-5901
[10] Liu S X, Xie L H, Gao B, Zhang C D, Sun C Y, Li D H, Su Z M. Chem. Commun., 2005, 5023-5025
[11] Klemperer W G, Marquart T A, Yaghi O M N. Angew. Chem. Int. Ed., 1992, 31: 49-51
[12] 徐如人(Xu R R), 庞文琴(Pang W Q)主编. 无机合成与制备化学(Inorganic Synthesis and Preparative Chemistry). 北京: 高等教育出版社(Beijing: Higher Education Press), 2001
[13] 洪茂椿(Hong M C), 陈荣(Chen R), 梁文平(Liang W P). 21世纪的无机化学(Inorganic Chemistry in the 21st Century). 北京: 科学出版社(Beijing: Science Press), 2005. 213-233
[14] Zhang L R, Shi Z, Yang G Y, Chen X M, Feng S H. J. Solid State Chem., 1999, 148: 450-454
[15] Wu M M, Law T S C, Sung H H Y, Cai J W, Williams I D. Chem. Commun., 2005, 1827-1829
[16] Müller A, Dring J. Angew. Chem. Int. Ed. Engl., 1988, 27: 1721-1722
[17] Han G, Greaney M A, Jacobson A J. J. Chem. Soc. Chem. Commun., 1991, 260-261
[18] Zheng S T, Zhang J, Yang G Y. Z. Anorg. Allg. Chem., 2005, 631: 170-173
[19] Qi Y F, Li Y G, Wang E B, Jin H, Zhang Z Z, Wang X L, Chang S. J. Solid State Chem., 2007, 180: 382-389
[20] Zheng S T, Zhang J, Li B, Yang G Y. Dalton. Trans., 2008, 5584-5587
[21] Cui X B, Xu J Q, Li Y, Sun Y H, Yang G Y. Eur. J. Inorg. Chem., 2004, 1051-1055
[22] Zheng S T, Zhang J, Xu J Q, Yang G Y. J. Solid State Chem., 2005, 178: 3740-3746
[23] Qi Y F, Li Y G, Wang E B, Jin H, Zhang Z M, Wang X L, Chang S. Inorg. Chim. Acta, 2007, 360: 1841-1853
[24] Dong B X, Peng J, Gómez-García C J, Benmansour S, Jia H Q, Hu N H. Inorg. Chem., 2007, 46: 5933-5941
[25] Cui X B, Xu J Q, Sun Y H, Li Y, Ye L, Yang G Y. Inorg. Chem. Commun., 2004, 7: 58-61
[26] Zheng S T, Chen Y M, Zhang J, Xu J Q, Yang G Y. Eur. J. Inorg. Chem., 2006, 397-406
[27] Zhou J, Zheng S T, Fang W H, Yang G Y. Eur. J. Inorg. Chem., 2009, 5075-5078
[28] Cui X B, Xu J Q, Meng H, Zheng S T, Yang G Y. Inorg. Chem., 2004, 43: 8005-8009
[29] Zheng S T, Zhang J, Yang G Y. Inorg. Chem., 2005, 44: 2426-2430
[30] Zheng S T, Wang M H, Yang G Y. Inorg. Chem., 2007, 46: 9503-9508
[31] Zheng S T, Zhang J, Yang G Y. Eur. J. Inorg. Chem., 2004, 2004-2007
[32] Zhao D, Zheng S T, Yang G Y. J. Solid State Chem., 2008, 181: 3071-3077
[33] Qi Y F, Li Y G, Qin C, Wang E B, Jin H, Xiao D R, Wang X L, Chang S. Inorg. Chem., 2007, 46: 3217-3230
[34] Zhang L J, Zhao X L, Xu J Q, Wang T G. J. Chem. Soc. Dalton. Trans., 2002, 3275-3276
[35] Li Y, Liu J P, Wang J P, Niu J Y. Chem. Res. Chinese Universities, 2009, 25(4): 426-429
[36] Wutkowski A, Nther C, Kgerler P, Bensch W. Inorg. Chem., 2008, 47: 1916-1918
[37] Gao Y Z, Han Z G, Xu Y Q, Hu C W. J. Clust. Sci., 2010, 21: 163-171
[38] Li H, Eddaoude M, O’Keeffe M, Yaghi O M. Nature, 1999, 402: 276-279
[39] Wang X Q, Liu L M, Zhang G, Jacobson A J. Chem. Commun., 2001, 2472-2473
[40] Tripathi A, Hughbanks T, Clearfield A. J. Am. Chem. Soc., 2003, 125: 10528-10529
[41] Chen Y M, Wang E B, Lin B Z, Wang S T. Dalton. Trans., 2003, 519-520
[42] Whitfield T, Wang X, Jacobson A J. Inorg. Chem., 2003, 42: 3728-3733
[43] Pitzschke D, Wang J, Hoffmann R D, Pttgen R, Bensch W. Angew. Chem. Int. Ed., 2006, 45: 1305-1308
[44] Gao Y Z, Xu Y Q, Li S, Han Z G, Cao Y, Cui F Y, Hu C W. J. Coord. Chem., 2010, 63: 3373-3383
[45] Barra A L, Gatteschi D, Pardi L, Müller A, Dring J. J. Am. Chem. Soc., 1992, 114: 8509-8514
[46] Müller A, Sarkar S, Shah S Q N, Bgge H, Schmidtmann M, Kgerler P, Hauptfleisch B, Trautwein A X, Schünemann V. Angew. Chem. Int. Ed., 1999, 38: 3238-3241
[47] Barra A L, Gatteschi D, Pardi L, Müller A, Dring J. J. Am. Chem. Soc., 1992, 114: 8509-8514
[48] Müller A, Peters F. Chem. Rev., 1998, 98: 261-267

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[7] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[8] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[9] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[10] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[11] Hui Zhang, Shanshan Wang, Jinshan Yu. Low-Symmetry Two-Dimensional ReS2 and its Heterostructures:Chemical Vapor Deposition Synthesis and Properties [J]. Progress in Chemistry, 2022, 34(6): 1440-1452.
[12] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[13] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[14] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
Viewed
Full text


Abstract

Substituted Vanadium-Oxide Clusters