中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (5): 923-929 Previous Articles   Next Articles

• Review •

Preparation of Conductive Hydrogel

Shao Liang1, Liu Mingzhu1, Qiu Jianhui1,2, Gao Chunmei1, Zhang Guohong2, Qin Lijun1   

  1. 1. Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China;
    2. Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan
  • Received: Revised: Online: Published:
PDF ( 4162 ) Cited
Export

EndNote

Ris

BibTeX

As a new type of functional materials, conductive hydrogel has attracted widespread attentions. In accordance with the current research situation, conductive hydrogel could be sorted several types, as polyelectrolyte conductive hydrogel, acid-doped conductive hydrogel, inorganic substance add conductive hydrogel and conductive polymers-based conductive hydrogel etc. In addition, conductive polymer and hydrogel are macromolecular systems which possess special and important properties that make them suitable for a wide range of practical applications. Therefore, in this paper, the progress about the preparation of conductive polymer-based conductive hydrogel is reviewed especially.

CLC Number: 

[1] Qiu Y, Park K. Adv. Drug. Deliv. Rev., 2001, 53: 321-339
[2] Liang H F, Hong M H, Ho R M, Chung C K, Lin Y H, Chen C H, Sung H W. Biomacromolecules, 2004, 5: 1917-1925
[3] Tomatsu I, Hashidzume A, Harada A. Macromolecules, 2005, 38: 5223-5227
[4] Menager C, Sandre O, Mangili J, Cabuil V. Polymer, 2004, 45: 2475-2481
[5] 尚婧(Shang J), 陈新(Chen X), 邵正中(Shao Z Z). 化学进展(Progress in Chemistry), 2007, 19(9): 1393-1399
[6] 金淑萍(Jin S P), 柳明珠(Liu M Z), 陈世兰(Chen S L), 卞凤玲(Bian F L), 陈勇(Chen Y), 王斌(Wang B), 詹发禄(Zhan F L), 刘守信(Liu S X). 物理化学学报(Acta Physico-Chimica Sinica), 2007, 23(3): 438- 446
[7] Gerlach G, Guenther M, Sorber J, Suchaneck G, Arndt K F, Richter A. Sensor. Actuat. B-Chem., 2005, 111/112: 555-561
[8] Herber S, Eijkel J, Olthuis W. Chem. Phys., 2004, 121: 2746-2751
[9] Satarkar N S, Zach Hilt J. Acta Biomater., 2008, 4: 11-16
[10] Chandra S, Sekhon S S, Srivastava R, Arora N. Solid State Ionics, 2002, 154/155: 609-619
[11] Guiseppi-Elie A. Biomaterials, 2010, 31: 2701-2716
[12] Kim D H, Wiler J A, Anderson D J, Kipke D R, Martin D C. Acta Biomater., 2010, 6: 57-62
[13] Ismail Y A, Shin M K, Kim S J. Sensor. Actuat. B-Chem., 2009, 136: 438-443
[14] sberg P, Ingans O. Biosens. Bioelectron., 2003, 19: 199-207
[15] Brahim S, Narinesingh D, Guiseppi-Elie A. Biosens. Bioelectron., 2002, 17: 53-59
[16] Brahim S, Narinesingh D, Guiseppi-Elie A. Electroanalysis, 2002, 14: 627-633
[17] Bajpai A K, Shukla S K, Bhanu S, Kankane S. Prog. Polym. Sci., 2008, 33: 1088-1118
[18] Pissis P, Kyritsis A. Solid State Ionics, 1997, 97: 105-113
[19] Zygado-Monikowska E, Florjańczyk Z, Wielgus-Barry E, Hildebrand E. J. Power Sources, 2006, 159: 392-398
[20] Yao L, Krause S. Macromolecules, 2003, 36: 2055-2065
[21] Wieczorek W, Stevens J R. Polymer, 1997, 38: 2057-2065
[22] Przyluski J, Poitarzewski Z, Wieczorek W. Polymer, 1997, 39: 4343-4347
[23] Sun X, Liu G, Xie H Y, Kerr J B. Solid State Ionics, 2004, 175: 713-716
[24] Shinji N, Hajime W, Naoji F, Hiroshi I. Electrochim. Acta, 2003, 48: 749-753
[25] Wu J, Lan Z, Wang D, Hao S, Lin J, Yin S. Electrochim. Acta, 2006, 51: 4243-4249
[26] Samba K, Rhee K Y. Colloid. Surface. A, 2009, 349: 29-34
[27] Lin J, Tang Q, Wu J, Hao S. React. Funct. Polym., 2007, 67: 275-281
[28] Tang Q, Lin J, Wu J. J. Appl. Polym. Sci., 2008, 108: 1490-1495
[29] Lin J, Tang Q, Wu J. React. Funct. Polym., 2007, 67: 489-494
[30] Lin J, Tang Q, Wu J, Sun H, Fan S, Hu D. Polym. Composite., 2009, 30: 1132-1137
[31] Ajayan P M. Chem. Rev., 1999, 99: 1787-1800
[32] MacDonald R A, Voge C M, Kariolis M, Stegemann P. Acta Biomater., 2008, 4: 1583-1592
[33] Akamatsu T, Kasuga T, Masayuki N. J. Non-Cryst. Solids., 2005, 351: 691-696
[34] Heeger A J. Curr. Appl. Phys., 2001, 1: 247-267
[35] Macdiarmid A G. Curr. Appl. Phys., 2001, 1: 269-279
[36] Shirakawa H. Curr. Appl. Phys., 2001, 1: 281-286
[37] Pepin-Donat B, Viallat A, Blachot J F, Lombart C. Adv. Mater., 2006, 18: 1401-1405
[38] Moschou E A, Peteu S F, Bachas L G, Madou M J, Daunert S. Chem. Mater., 2004, 16: 2499-2502
[39] Dai T, Qing X, Lu Y, Xia Y. Polymer, 2009, 50: 5236-5241
[40] Agata M, Marcin W, Ewa B, Krzysztof M. Talanta, 2010, 82: 151-157
[41] Brahim S, Narinesingh D, Guiseppi-Elie A. Biomacromolecules, 2003, 4: 497-503
[42] Brahim S, Guiseppi-Elie A. Electroanalysis, 2005, 17: 556-70
[43] Heeger A J. J. Phys. Chem. B, 2001, 105: 8475-8491
[44] Alvarez V, Sordo J A, Scuseria G E. J. Am. Chem. Soc., 2005, 127: 11318-11327
[45] Bhavana A D, Insun Y, Michael S F. J. Am. Chem. Soc., 2004, 126: 52-53
[46] 胡德(Hu D), 范士军(Fan S J), 唐群委(Tang Q W), 吴季怀(Wu J H), 林建明(Lin J M). 化学工程与装备(Chemical Engineering and Eguipment), 2008, 11(11): 102-104
[47] Tang Q, Wu J, Lin J. Carbohyd. Polym., 2008, 73: 315-321
[48] Lin J, Tang Q, Hu D, Sun X, Li Q, Wu J. Colloid. Surface. A, 2009, 346: 177-183
[49] Tang Q, Wu J, Sun H, Fan S, Hu D, Lin J. Carbohyd. Polym., 2008, 73: 473-481
[50] Tang Q, Lin J, Wu J, Zhang C, Hao S. Carbohyd. Polym., 2007, 67: 332-336
[51] Lin J, Tang Q, Wu J, Li Q. J. Appl. Polym. Sci., 2010, 116: 1376-1383
[52] Yahya A I, Su R S, Kwang M S, Seong G Y, Kiwon S, Sun I K, Seon J K. Sensor. Actuat. B-Chem., 2008, 129: 834-840
[53] Lira L M, Córdoba de Torresi S I. Electrochem. Commun., 2005, 7: 717-723
[54] Low L M, Seetharaman S, He K Q, Madou M J. Sensor. Actuat. B-Chem., 2000, 67: 149-160
[55] Siddhanta S K, Gangopadhyay R. Polymer, 2005, 46: 2993-3000
[56] Dispenza C, Fiandaca G, Presti C L, Piazza S, Spadaro G. Radiat. Phys. Chem., 2007, 76: 1371-1375
[57] Dispenza C, Presti C L, Belfiore C, Spadaro G, Piazza S. Polymer, 2006, 47: 961-971
[58] Tang Q, W J, Sun H, Lin J, Fan S, Hu D. Carbohyd. Polym., 2008, 74: 215-219
[59] Chansai P, Sirivat A, Niamlang S, Chotpattananont D, Viravaidya-Pasuwat K. Int. J. Pharm., 2009, 381: 25-33
[60] Chen L, ByoungSuhk K, Nishino M, Jian P G, Osada Y. Macromolecules, 2000, 33: 1232-1236
[61] ByoungSuhk K, Chen L, Jian P G, Osada Y. Macromolecules, 1999, 32: 3964-3969
[62] Dai T, Qing X, Zhou H, Shen C, Wang J, Lu Y. Syn. Metal., 2010, 160: 791-796
[63] Zhang X, Chechik V, Smith D K, Walton P H, Duhme-Klair A K, Luo Y. Syn. Metal., 2009, 159: 2135-2140
[64] Dai T, Qing X, Wang J, Shen C, Lu Y. Compos. Sci. Technol., 2010, 70: 498-503

[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[4] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[5] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[6] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[7] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[8] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[9] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[10] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[11] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[12] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[13] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[14] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[15] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.
Viewed
Full text


Abstract

Preparation of Conductive Hydrogel