中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (5): 842-851 Previous Articles   Next Articles

• Invited Article •

Applications of Spiropyran Derivatives in Analytical Chemistry

Shao Na1, Zhang Xiangyuan1, Yang Ronghua2   

  1. 1. College of Chemistry, Beijing Normal University, Beijing 100875, China;
    2. College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
  • Received: Revised: Online: Published:
PDF ( 3568 ) Cited
Export

EndNote

Ris

BibTeX

Spiropyrans, an important class of photochromic compounds that undergo reversible structural isomerization between a colorless spiropyran form and a colored merocyanine, are an attractive starting point in constructions of molecular-level devices with molecular recognition function and signal transduction ability due to their unique molecule binding ability and signal transduction function. The merocyanine may interact with their environment (solvent or matrix) leading to different photochromic responses. By exploiting such characteristics, spiropyrans have been employed not only in materials chemistry for molecular switches, but also in analytical chemistry as molecular sensors. During the past decades, a number of receptors possessing diverse spiropyran skeletons have been designed and utilized for optical sensing of metal ions, some for neutral molecules, such as nucleobases, amino acids, peptide and DNA, and a few for anions. Some work has also been done in eletrochemical sensing using spiropyran-modified electrode. This review summarizes the progress in the study of spiropyran derivatives in analytical chemistry, including their application as spectroscopic sensors for metal ions, anions and organic molecules, and also the application of spiropyran in electrochemical immuno-sensor. Traditional spiropyran derivatives containing crown ether moieties or -NO2 group, and special kinds of spiropyrans like bis-spiropyran which is more super in binding selectivity, are discussed in detail.

CLC Number: 

[1] Bertelson R C. Photometric Process Involving Heterocyclic Cleavage, in Photochromism (Ed. Brown G H). New York: Wiley-Interscience, 1971. ch. 3
[2] Taylor L D, Nicholson J, Davis R B. Tetrahedron Lett., 1967: 1585-1588
[3] Phillips J P, Mueller A, Przystal F. J. Am. Chem. Soc., 1965, 87: 4020-4020
[4] Inouye M, Ueno M, Kitao T, Tsuchiya K. J. Am. Chem. Soc., 1990, 112: 8977-8979
[5] Inouye M, Ueno M, Tsuchiya K, Nakayama N, Konishi T, Kitao T. J. Org. Chem., 1992, 57: 5377-5383
[6] Inouye M, Noguchi Y, Isagawa K. Angew. Chem. Int. Ed. Engl., 1994, 33: 1163-1166
[7] Inouye M, Akamatsu K, Nakazumi H. J. Am. Chem. Soc., 1997, 119: 9160-9165
[8] Kimura K, Yamashita T, Yokoyama M. J. Chem. Soc. Chem. Commun., 1991, 147-148
[9] Tanaka M, Nakamura M, Salhin M A A, Ikeda T, Kamada K, Ando H, Shibutani Y, Kimura K. J. Org. Chem., 2001, 66: 1533-1537
[10] Salhin M A A, Tanaka M, Kamada K, Ando H, Ikeda T, Shibutani Y, Yajima S, Nakamura M, Kimura K. Eur. J. Org. Chem., 2002, 4: 655-662
[11] Sakamoto H, Yokohata T, Yamamura T, Kimura K. Anal. Chem., 2002, 74: 2522-2528
[12] Sakamoto H, Takagaki H, Nakamura M, Kimura K. Anal. Chem., 2005, 77: 1999-2006
[13] Collins G E, Choi L S, Ewing K J, Michelet V, Bowen C M, Winkler J D. Chem. Commun., 1999, 321-322
[14] Evans L, Collins G E, Shaffer R E, Michelet V, Winkler J D. Anal. Chem., 1999, 71: 5322-5327
[15] Kimura K, Utsumi T, Teranishi T, Yokoyama M, Sakamoto H, Okamoto M, Arakawa R, Moriguchi H, Miyaji Y. Angew. Chem. Int. Ed. Engl., 1997, 36: 2452-2454
[16] Nakamura M, Fujioka T, Sakamoto H, Kimura K. New J. Chem., 2002, 26: 554-559
[17] Kimura K, Teranishi T, Yokoyama M, Yajima S, Miyake S, Sakamoto H, Tanaka M. J. Chem. Soc. Perkin Trans. 2, 1999, 999: 199-204
[18] Winkler J D, Bowen C M, Michelet V. J. Am. Chem. Soc., 1998, 120: 3237-3242
[19] Filley J, Ibrahim M A, Nimlos M R, Watt A S, Blake D M. J. Photochem. Photobio. A, 1998, 117: 193-198
[20] Ahmed S A, Tanaka M, Ando H, Tawa K, Kimura K. Tetrahedron, 2004, 60: 6029-6036
[21] Liu Z L, Jiang L, Liang Z, Gao Y H. Tetrahedron Lett., 2005, 46: 885-887
[22] Shao N, Zhang Y, Cheung S M, Yang R H, Chan W H, Mo T, Li K A, Liu F. Anal. Chem., 2005, 77: 7294-7303
[23] Shao N, Jin J Y, Wang H, Zhang Y, Yang R H, Chan W H. Anal. Chem., 2008, 80: 3466-3475
[24] Zhu J F, Yuan H, Chan W H, Lee A W M. Tetrahedron Lett., 2010, 51: 3550-3554
[25] Zhu J F, Yuan H, Chan W H, Lee A W M. Org. Biomol. Chem., 2010, 8: 3957-3964
[26] Sunamoto J, Iwamoto K, Mohri Y, Kominato T. J. Am. Chem. Soc., 1982, 104: 5502-5504
[27] Marxtibbon S, Willner I. J. Chem. Soc. Chem. Commun., 1994, (10): 1261-1262
[28] Tsubaki K, Mukoyoshi K, Morikawa H, Kinoshita T, Fuji K. Chirality, 2002, 14: 713-715
[29] Shao N, Jin J Y, Cheung S M, Yang R H, Chan W H, Mo T. Angew. Chem. Int. Ed., 2006, 45: 4944-4948
[30] Liu Y, Fan M, Zhang S, Sheng X, Yao J. New J. Chem., 2007, 31: 1878-1881
[31] Inouye M, Kim K, Kitao T. J. Am. Chem. Soc., 1992, 114: 778-780
[32] Andersson J, Li S M, Lincoln P, Andreasson J. J. Am. Chem. Soc., 2008, 130: 11836-11837
[33] Tomizaki K Y, Jie X, Mihara H. Bioorg. Med. Chem. Lett., 2005, 15: 1731-1735
[34] Tomizaki K Y, Mihara H. J. Mater. Chem., 2005, 15: 2732-2740
[35] Tomizaki K Y, Mihara H. Mol. BioSyst., 2006, 2: 580-589
[36] Sakata T, Yan Y L, Marriott G. P. Natl. Acad. Sci. USA, 2005, 102: 4759-4764
[37] Fujimoto K, Amano M, Horibe Y, Inouye M. Org. Lett., 2006, 8: 285-287
[38] Shao N, Jin J Y, Wang H, Zheng J, Yang R H, Chan W H, Abliz Z. J. Am. Chem. Soc., 2010, 132: 725-736
[39] Takumi K, Sakamoto H, Uda R M, Sakurai Y, Kume H, Kimura K. Colloids Surf. A, 2007, 304: 49-53
[40] Shiraishi Y, Adachi K, Itoh M, Hirai T. Org. Lett., 2009, 11: 3482-3485
[41] Park I S, Jung Y S, Lee K J, Kim J M. Chem. Commun., 2010, 46: 2859-2861
[42] Shao N, Gao X D, Wang H, Yang R H, Chan W H. Anal. Chem., 2010, 82: 4628-4636
[43] Willner I, Blonder R, Dagan A. J. Am. Chem. Soc., 1994, 116: 9365-9366
[44] Lion-Dagan M, Katz E, Willner I. J. Am. Chem. Soc., 1994, 116: 7913-7914
[45] Katz E, Willner B, Willner I. Biosens. Bioelectron., 1997, 12: 703-719
[46] Blonder R, Katz E, Willner I, Wray V, Bückmann A F. J. Am. Chem. Soc., 1997, 119: 11747-11757
[47] Wen G Y, Yan J, Zhou Y C, Zhang D Q, Mao L Q, Zhu D B. Chem. Commun, 2006, (28): 3016-3018

[1] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[2] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[3] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[4] Jinke Wu, Jianjun Wang, Lixing Dai, Donghao Sun, Jiajia Chen. Metal Coordination Polyurethanes [J]. Progress in Chemistry, 2021, 33(12): 2188-2202.
[5] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[6] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[7] Yanan Zheng, Dan Wang. Structures, Properties, and Applications of Metalloregulatory Proteins [J]. Progress in Chemistry, 2019, 31(10): 1372-1383.
[8] Shanye Yang, Xiangxue Wang, Zhongshan Chen, Qian Li, Benben Wei, Xiangke Wang. Synthesis of Fe3O4-Based Nanomaterials and Their Application in the Removal of Radionuclides and Heavy Metal Ions [J]. Progress in Chemistry, 2018, 30(2/3): 225-242.
[9] Yu Xianglin, Chen Xiaojiao, Zhang Biyu, Rao Cong, He Yuan, Li Junbo. Ordered Mesoporous Material-Based Fluorescence Probes and Their Applications [J]. Progress in Chemistry, 2016, 28(6): 896-907.
[10] Wu Hongwei, Chen Yayun, Rao Caihui, Liu Chuanxiang*. Anion Receptors Based on CH Donor Group [J]. Progress in Chemistry, 2016, 28(10): 1501-1514.
[11] Zhu Qianjiang, Xue Saifeng, Tao Zhu. Supramolecular Coordination Polymers Based on the Outer-Surface Interaction of Cucurbit [n] urils [J]. Progress in Chemistry, 2015, 27(6): 625-632.
[12] Liu Yu, Fu Ruiqi, Lou Zimo, Fang Wenzhe, Wang Zhuoxing, Xu Xinhua. Preparation of Functional Carbon-Based Materials for Removal of Heavy Metals from Aqueous Solution [J]. Progress in Chemistry, 2015, 27(11): 1665-1678.
[13] Yang Chuting, Han Jun, Luo Yangming, Hu Sheng, Wang Xiaolin. Metal Ion Recognition Functions Based on Cyclopeptides [J]. Progress in Chemistry, 2014, 26(09): 1537-1550.
[14] Chang Dingming, Zhang Haiqin, Lu Zhihao, Huang Guangtuan, Cai Lankun, Zhang Lehua. Behavior of Metal Ions in Microbial Fuel Cells [J]. Progress in Chemistry, 2014, 26(07): 1244-1254.
[15] Li Hui, Kong Deming. Applications of DNAzymes in the Detection of Heavy Metal Ions [J]. Progress in Chemistry, 2013, 25(12): 2119-2130.