中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (12): 2417-2441 Previous Articles   Next Articles

• Review •

Molecular Design and XAFS Characterization of Active Centers of Solid-State Catalysts

Long Jinlin, Gu Quan, Zhang Zizhong, Wang Xuxu*   

  1. State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002, China
  • Received: Revised: Online: Published:
PDF ( 1495 ) Cited
Export

EndNote

Ris

BibTeX

Surface organometallic chemistry (SOMC) is an effective route to design and prepare surface metal species with well-defined composition and molecular structure. Synchrotron radiation X-ray absorption fine structure spectroscopy (XAFS) technique is currently a powerful tool to characterize geometrical structure of active sites of solid-state catalysts. Their combination provided a method to design and construct in molecular level catalytic active centres, which was established to be one of the important goals in the field of heterogeneous catalysis. This article reviews the recent advancements in construction of single-site active metallic centre in the channels and cages of zeolite molecular sieves by the SOMC method and in characterizing geometrical structure of active sites of heterogeneous catalytic materials with XAFS, the physical fundament, experimental methods, and data analysis of XAFS technique and its merits and demerits in characterization of catalytic materials, the chemical fundament of SOMC. Single-site mononuclear or polynuclear Ti, Cu, and Fe active centers were successfully constructed in molecular level in the channels and cages of zeolite molecular sieves by the SOMC method. Their micro-structures were characterized in detail with XAFS combined other spectroscopic techniques and their catalytic properties were evaluated. The catalytic nature of these metallic centers was elucidated by establishing the inherent relationship among structure, activity, and composition. The study results revealed in molecular level the pyrolysis mechanism of Cu 2 over the MCM-41 surface, and showed a novel route to prepare CuO, Cu2O and Cu(0)/MCM-41 materials with well-defined composition and micro-structure, clarifying the hydroxylation mechanism of phenol over copper active sites and the nuclearity-dependent catalytic function of iron-oxo species; based on the binuclear diiron clusters with well-defined structure and composition constructed in molecular level by SOMC, a novel selective catalytic reduction pathway for the iron-catalyzed NO-HC reaction was proposed; a novel concept of “surface photoexcited catalysis model” for Fe, Ti contained zeolite molecular sieve photocatalysts and N-doped TiO2 visible-light photocatalyst was proposed in terms of the local structure of photoactive species identified clearly by XAFS technique. Contents 1 Introduction 2 Chemical fundament of surface organometallic chemistry 3 Basic fundament of XAFS 3.1 Physical fundament of XAFS 3.2 Data analysis of XAFS 3.3 Main experimental methods of XAFS and its merits and demerits in characterization of catalytic materials 4 Chemical construction and characterization of catalytic active centers of solid-state catalysts 4.1 Molecular construction of photoactive Ti centers on the surface of MCM-41 molecular sieves 4.2 Molecular construction of highly-dispersed copper active centers on the surface of MCM-41 molecular sieves 4.3 Spectroscopic identification of photoactive centers of HZSM-5 zeolite with trace iron impurity 4.4 Molecular construction of iron active centers confined in the supercages of HY zeolite 4.5 Brief summary on the construction of active centers with surface organometallic chemistry 4.6 Identifying the photoactive N species of N-doped TiO2 visible-iight photocatalyst with NEXAFS 5 Conclusions and outlook

CLC Number: 

[1] Copéret C, Chabanas M, Saint-Arroman R P, Basset J M. Angew. Chem. Int. Ed., 2003, 42: 156-181
[2] Vimont A, Thibault-Starzyk F, Daturi M. Chem. Soc. Rev., 2010, 39: 4928-4950
[3] Wachs I E, Roberts C A. Chem. Soc. Rev., 2010, 39: 5002-5017
[4] Brückner A. Chem. Soc. Rev., 2010, 39: 4673-4684
[5] Chen P, Zhou X, Shen H, Andoy N M, Choudhary E, Han K S, Liu G, Meng W. Chem. Soc. Rev., 2010, 39: 4560-4570
[6] Blasco T. Chem. Soc. Rev., 2010, 39: 4685-4702
[7] Sinfelt J H, Viag H, Lytle F W. Catal. Rev. Sci. Eng., 1984, 26: 81-140
[8] Brown M, Peierls R E, Stern E A. Phys. Rev. B, 1977, 15: 738-744
[9] Koningsberger D C, Prins R. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SESAFS, and XANES. New York: John Wiley, 1988
[10] 韦世强(Wei S Q), 孙治湖(Sun Z H), 潘志云(Pan Z Y), 闫文盛(Yan W S), 钟文杰(Zhong W J), 贺博(He B), 谢治(Xie Z), 韦正(Wei Z). 中国科学技术大学学报(Journal of University of Science and Technology of China), 2007, 37: 426-437
[11] Basset J M, Lefebvre F, Santini C. Coord. Chem. Rev., 1998, 178/180: 1703-1723
[12] Lefebvre F, Basset J M. J. Mol. Catal. A: Chem., 1999, 146(1/2): 3-12
[13] Basset J M, Candy J P, Choplin A. Perspective in Catalysis (Eds. Thomas J A, Zamaraev K I). Oxford: Blackwell Scientific Pubs., 1992. 125
[14] Ermakov Y I, Kuznetsov B N, Zakhorov V A. Stud. Surf. Sci. Catal., 1981, 8: 59-120
[15] Murrell L. Advanced Material in Catalysis (Eds. Burton J J, Garten R L). New York: Acad. Press, 1977. 235
[16] Bailey D C, Langer S H. Chem. Rev., 1981, 81: 109-148
[17] Ichikawa M. Adv. Catal., 1992, 38: 283-400
[18] Zecchina A, Arean C O. Catal. Rev. Sci. Eng., 1993, 35: 261-317
[19] Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang S G, Ichihashi Y, Park D R, Suzuki Y, Koyano K, Tatsumi T. Catal. Today, 1998, 44: 327-332
[20] Wang X, Lian W, Fu X, Basset J M, Lefebvre F. J. Catal., 2006, 238: 13-20
[21] Thangaraj A, Kumar R, Ratnasamy P. J. Catal., 1991, 131: 294-297
[22] Sun J, Meng X, Xiao F S. J. Catal., 2000, 193: 199-206
[23] Xiao F S, Sun J, Xu R. J. Catal., 2001, 199: 273-281
[24] Chen C X, Xu C H, Feng L R, Qiu F L, Suo J S. J. Mol. Catal. A: Chem., 2006, 252: 171-175
[25] Kannan S, Dubey A, Knozinger H. J. Catal., 2005, 231: 381-392
[26] Saha P K, Koner S. Inorg. Chem. Commun., 2004, 7: 1164-1166
[27] Seelan S, Sinha A K. Appl. Catal. A: Gen., 2003, 238: 201-209
[28] Shevade S S, Raja R, Kotasthane A N. Appl. Catal. A: Gen., 1999, 178: 243-249
[29] Qi X, Zhang L, Xie W, Ji T, Li R. Appl. Catal. A: Gen., 2004, 276: 89-94
[30] Lou L L, Liu S. Catal. Commun., 2005, 6: 762-765
[31] Wang L, Kong A, Chen B, Ding H, Shan Y, He M. J. Mol. Catal. A: Chem., 2005, 230: 143-150
[32] Wang J, Park J N, Jeong H C, Choi K S, Wei X Y, Hong S I, Lee C W. Ener. Fuels, 2004, 18: 470-476
[33] Bahranowski K, Dula R, Gsior M. Appl. Clay Sci., 2001, 18: 93-101
[34] 张国英(Zhang G Y). 福州大学博士论文(Doctoral Dissertation of Fuzhou University), 2005
[35] Zhang G, Wang X, Long J, Xie L, Ding Z, Wu L, Li Z, Fu X. Chem. Mater., 2008, 20: 4565-4575
[36] Zhang G, Long J, Wang X, Dai W, Li Z, Wu L, Fu X. New J. Chem., 2009, 33: 2044-2050
[37] Zhang G, Long J, Wang X, Zhang Z, Dai W, Liu P, Li Z, Wu L, Fu X. Langmuir, 2010, 26: 1362-1371
[38] Yan G, Wang X, Fu X, Li D. Catal. Today, 2006, 93/95: 851-856
[39] Yan G, Long J, Wang X, Li Z, Wang X, Xu Y, Fu X. J. Phys. Chem. C, 2007, 111: 5195-5202
[40] Li C. J. Catal., 2003, 216: 203-212
[41] Yan G, Long J, Wang X, Li Z, Fu X. C. R. Chieme, 2008, 11: 114-119
[42] Feng X, Hall W K. J. Catal., 1997, 166: 368-376
[43] Xin H, Liu j, Fan F, Feng Z, Jia G, Yang Q, Li C. Micropor. Mesopor. Mater., 2008, 113: 231-239
[44] Liu H, Lu G, Guo Y, Wang J. Micropor. Mesopor. Mater., 2008, 108: 56-64
[45] Tekbaş M, Yatmaz H C, Bektaş N. Micropor. Mesopor. Mater., 2008, 115: 594-602
[46] Kasiri M B, Aleboyeh H, Aleboyeh A. Appl. Catal. B: Environ., 2008, 84: 9-15
[47] Kögel M, Sandoval V H, Schwieger W, Tissler A, Turek T. Catal. Lett., 1998, 51: 23-25
[48] Pérez-Ramirez J, Kapteijn F, Mul G, Xu X, Moulijn J A. Catal. Today, 2002, 76: 55-74
[49] Kameoka S, Yuzaki K, Takeda T, Tanaka S, Ito S, Miyadera T, Kunimori K. Phys. Chem. Chem. Phys., 2001, 3: 256-260
[50] Sun Q, Gao Z X, Chen H Y, Sachtler W M H. J. Catal., 2001, 201: 88-99
[51] Long R Q, Yang R T. J. Am. Chem. Soc., 1999, 121: 5595-5596
[52] Long R Q, Yang R T. J. Catal., 2001, 201: 145-152
[53] Kharitonov A S, Aleksandrova T N, Vostrikova L A, lone K G, Panov G I. USSR 4445646, 1988
[54] Kharitonov A S, Aleksandrova T N, Panov G I, Sobolev V I, Sheveleva G A, Paukshtis E A. Kinet. Catal., 1994, 35: 270-271
[55] Lobree L J, Hwang I C, Rimer J A, Bell A T. J. Catal., 2000, 186: 242-253
[56] Marturano P, Drozdova L, Kogelbauer A. J. Catal., 2000, 192: 236-247
[57] Joyner R, Stockenhuber M. J. Phys. Chem. B, 1999, 103: 5963-5976
[58] Nozaki C, Lugmair C G, Bell A T, Tilley T D. J. Am. Chem. Soc., 2002, 124: 13194-13203
[59] Lippard S J, Berg J M. Principles of Bioinorganic Chemistry. Mill Valley, CA: University Science Books, 1994. Charpter 9
[60] Panov G I, Uriarte A K, Rodkin M A, Sobolov V I. Catal. Today, 1998, 41: 365-385
[61] Wood B R, Reimer J A, Bell A T, Janicke M T, Ott K C. J. Catal., 2004, 225: 300-306
[62] Choi S H, Wood B R, Bell A T, Janicke M T, Ott K C. J. Phys. Chem. B, 2003, 107: 11843-11851
[63] Liang W Z, Bell A T, Head-Gordon M, Chakraborty A K. J. Phys. Chem. B, 2004, 108: 4362-4368
[64] Khaliullin R Z, Bell A T, Kazansky V B. J. Phys. Chem. A, 2001, 105: 10454-10461
[65] Wood B R, Reimer J A, Bell A T. J. Catal., 2004, 224: 148-155
[66] Ryder J A, Chakraborty A K, Bell A T. J. Catal., 2003, 220: 84-91
[67] Ryder J A, Chakraborty A K, Bell A T. J. Phys. Chem. B, 2002, 106: 7059-7064
[68] Rice M J, Chakraborty A K, Bell A T. J. Catal., 2000, 194: 278-285
[69] Rice M J, Chakraborty A K, Bell A T. J. Catal., 1999, 186: 222-227
[70] Fejes P, Lázár K, Marsi I, Rockenbauer A, Korecz L, Nagy J B, Perathoner S, Centi G. Appl. Catal. A: Gen., 2003, 252: 75-90
[71] Berlier G, Spoto G, Ricchiardi G. Fisicaro P, Zecchina A, Rossetti I, Selli E, Forni L, Giamello E, Lamberti C. J. Catal., 2002, 208: 64-82
[72] Battiston A A, Bitter J H, de Groot F M F, Overweg A R, Stephan O, van Bokhoven J A, Kooyman P J, van der Spek C, Vankó G, Koningsberger D C. J. Catal., 2003, 213: 251-271
[73] Moller K, Borvornwattananont A, Bein T. J. Phys. Chem., 1989, 93: 4562-4571
[74] Long J, Wang X, Ding Z, Xie L, Zhang Z, Dong J, Lin H, Fu X. J. Catal., 2008, 255: 48-58
[75] Long J, Wang X, Zhang G, Dong J, Yan T, Li Z, Fu X. Chem. Euro. J., 2007, 13; 7890-7899
[76] Iball B J, Morgan C H. Acta Cryst., 1967, 23: 239-244
[77] Churchill M R, Wormald J, Young D A T, Kaesz H D. J. Am. Chem. Soc., 1969, 91: 7201-7203
[78] Riley P E, Davis R E. Inorg. Chem., 1975, 14: 2507-2514
[79] Moriarty R M, Chen K N, Yeh C L, Flippen J L, Karle J F. J. Am. Chem. Soc., 1972, 94: 8944-8946
[80] Cotton F A, Lahuerta P. Inorg. Chem., 1975, 14: 116-119
[81] Dodge R P, Schomake R V. Acta Cryst., 1965, 18: 614-617
[82] Spoto G, Zecchina A, Bordiga S, Dante R. Mater. Chem. Phys., 1991, 29: 261-269
[83] Maschmeyer T, Rey F, Sankar G, Thomas J M. Nature, 1995, 378: 159-162
[84] Sinclair P E, Sankar G, Catlow C R A, Thomas J M, Maschmeyer T. J. Phys. Chem., 1997, 101: 4232-4237
[85] Wang X, Long J, Yan G, Zhang G, Fu X, Basset J M, Lefebvre F. Micropor. Mesopor. Mater., 2008, 108: 258-265
[86] Wilke M, Farges F, Peltit P E, Brown G E J, Martin F. Am. Mineral., 2001, 86: 714-730
[87] Choi S H, Wood B R, Bell A T, Janicke M T, Ott K C. J. Phys. Chem. B, 2004, 107: 8970-8980
[88] Long J, Wang X, Ding Z, Zhang Z, Lin H, Dai W, Fu X. J. Catal., 2009, 264: 163-174
[89] Ou C C, Lalancette R A, Potenza J A, Schugar H J. J. Am. Chem. Soc., 1978, 100: 2053-2057
[90] Thich J A, Ou C C, Powers D, Vasilion B, Mastropaolo D, Potenza J A, Schugar H J. J. Am. Chem. Soc., 1976, 98: 1425-1433
[91] Borer L, Thalken L, Ceccarelli C, Glick M, Zhang J H, Reiff W M. Inorg. Chem., 1983, 22: 1719-1724
[92] Battiston A A, Bitter J H, Heijboer W M, de Groot F M F, Koningsberg D C. J. Catal., 2003, 215: 279-293
[93] Lobree L J, Hwang I C, Reimer J A, Bell A T. J. Catal., 1999, 186: 242-253
[94] Mul G, Zandbergen M W, Kapteijn F, Moulijn J A, Pérez-Ramírez J. Catal. Lett., 2004, 93: 113-120
[95] Hall W K, Valyon J. Catal. Lett., 1992, 15: 311-315
[96] Long J, Zhang Z, Ding Z, Ruan R, Li Z, Wang X. J. Phys. Chem. C, 2010, 114: 15713-15727
[97] Nanba T, Obuchi A, Sugiura Y, Kouno C, Uchisawa J, Kushiyama S. J. Catal., 2002, 211: 53-63
[98] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269-271
[99] Zhang Z, Wang X, Long J, Gu Q, Ding Z, Fu X. J. Catal., 2010, 276: 201-214
[100] Sato S, Nakamura R, Abe S. Appl. Catal. A: Gen., 2005, 284: 131-137
[101] Diwald O, Thompson T L, Zubkov T, Goralski E G, Walck S D, Yates J T Jr. J. Phys. Chem. B, 2004, 108(19): 6004-6008
[102] Chen X, Burda C. J. Phys. Chem. B, 2004, 108 (40): 15446-15449
[103] Reyes-Garcia E A, Sun Y, Reyes-Gil K, Raftery D. J. Phys. Chem. C, 2007, 111 (6): 2738-2748
[104] Belver C, Bellod R, Fuerte A, Fernández-García M. Appl. Catal. B: Environ., 2006, 65: 301-308
[105] György E, Pérez del Pino A, Serra P, Morenza J L. Surf. Coat. Technol., 2003, 173: 265-270
[106] Valentin C D, Pacchioni G, Selloni A, Livraghi S, Giamello E. J. Phys. Chem. B, 2005, 109 (23): 11414-11419
[107] Chen J G. Surf. Sci. Rep., 1997, 30: 1-152
[108] Irie H, Watanabe Y, Hashimoto K. J. Phys. Chem. B, 2003, 107: 5483-5486
[109] Miyauchi M, Ikezawa A, Tobimatsu H, Irie H, Hashimoto K. Phys. Chem. Chem. Phys., 2004, 6: 865-870
[110] Thompson T L, Yates J T Jr. Top. Catal., 2005, 35: 197-210
[1] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[2] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[3] Meirong Kang, Fuxiang Jin, Zhen Li, Heyuan Song, Jing Chen. Research and Application of Supported Ionic Liquids [J]. Progress in Chemistry, 2020, 32(9): 1274-1293.
[4] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[5] Xinzhi Wang, Hongli Wang, Feng Shi. Alcohol Amination for N-Alkyl Amine Synthesis with Heterogeneous Catalysts [J]. Progress in Chemistry, 2020, 32(2/3): 162-178.
[6] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.
[7] Jiawei Li, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Chemical Fixation of Carbon Dioxide [J]. Progress in Chemistry, 2019, 31(10): 1350-1361.
[8] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[9] Fu Xianbiao, Yu Guipeng. Covalent Organic Frameworks Catalysts [J]. Progress in Chemistry, 2016, 28(7): 1006-1015.
[10] Xie Lijuan, Shi Xiaoyan, Liu Fudong, Ruan Wenquan. Selective Catalytic Reduction of NOx from Diesel Engine with NH3 over Zeolites Catalysts with Chabazite [J]. Progress in Chemistry, 2016, 28(12): 1860-1869.
[11] Zhang Lingfeng, Hu Zhongpan, Gao Zemin, Liu Yalu, Yuan Zhongyong. Preparation and Catalytic Application of Ordered Mesoporous Carbon-Based Metal Composite Materials [J]. Progress in Chemistry, 2015, 27(8): 1042-1056.
[12] Li Shanjian, Feng Lajun. Preparation and Catalytic Application of Task-Specific Ionic Liquid Hybrid Solid-Phase Nano Materials [J]. Progress in Chemistry, 2014, 26(10): 1633-1644.
[13] Zhuang Changfu, Liu Jianlu, Dai Wen, Wu Zhongping, Wang Ying, Gao Shuang*. Synthesis and Applications in Catalysis of Porphyrinic Metal-Organic Frameworks [J]. Progress in Chemistry, 2014, 26(0203): 277-292.
[14] Guo Xiao, Yan Yani, Zhang Yahong, Tang Yi. Heterogeneously Catalytic Transformation of Biomass-Derived Sugars [J]. Progress in Chemistry, 2013, 25(11): 1915-1927.
[15] Wang Yanbin, Zhao Hongying, Zhao Guohua, Wang Yujing, Yang Xiuchun. Iron Compound-Based Heterogeneous Fenton Catalytic Oxidation Technology [J]. Progress in Chemistry, 2013, 25(08): 1246-1259.