中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Preparation and Potential Application of Polymeric Micelles via RAFT Polymerization

Yang Zhenglong, Zhou Dan, Chen Qiuyun   

  1. School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
  • Contact: YANG Zheng-long E-mail:yangzhenglong@tongji.edu.cn
PDF ( 1204 ) Cited
Export

EndNote

Ris

BibTeX

The rapid progress of polymeric micelles, which due to their attractive advantages such as excellent tissue permeability, compatibilization effect, structural diversity and thermal stability, has raised interest in recent years. In this review, the research progress of amphiphilic block copolymer micelles with special structure and special properties is discussed. The formation mechanism and advantage of polymeric micelles via RAFT polymerization method are introduced. Different thermo- and pH-responsive micelles can be prepared quickly and easily in aqueous solution via RAFT polymerization method. However, dilution effect of polymer micelles greatly affect its practical application when the concentration of the polymer micelle below its critical micelle concentration. To improve the stability of polymer micelles, several methods to prepare polymeric cross-linked micelles are summarized. Finally, the current challenges for the polymeric micelles potential applications in controlled drug release, targeting, biological imaging, catalyst immobilization and other areas are highlighted.

Contents
1 Introduction
2 The RAFT polymerization mechanism
3 Methods to prepare polymeric cross-linked micelles
4 Potential applications of polymeric micelles
4.1 Polymeric micelles for controlled drug release
4.2 Polymeric micelles for drug targeting
4.3 Polymeric micelles for biological imaging
4.4 Polymeric micelles for catalyst immobilization and other area
5 Summary and outlook

CLC Number: 

[1] Hales M, Barner K C, Davis T P, Stenzel M H. Langmuir, 2004, 20:10809-10817
[2] McCormick C L, Sumerlin B S, Lokitz B S, Stempka J E. Soft Matter, 2008, 4:1760-1773
[3] Thurmond K B, Kowalewski T, Wooley K L. J. Am. Chem. Soc., 1996, 118:7239-7245
[4] Huang W L, Charleux B, Chiarelli R, Marx L, Rassat A, Vairon J P. Macromol. Chem. Phys., 2002, 203:1715-1723
[5] Babin J, Lepage M, Zhao Y. Macromolecules, 2008, 41:1246-1253
[6] Moad G, Rizzardo E, Thang S H. Macromolecules, 1998, 31:5559-5567
[7] Moad G, Rizzardo E, Thang S H. Aust. J. Chem., 2005, 58: 379-410
[8] Convertine A J, Lokitz B S, Vasileva Y, Myrick L J, Scales C W, Lowe A B. Macromolecules, 2006, 39:1724-1730
[9] McCormick C L, Kirkland S E, York A W. J. Macromol. Sci., 2006, 46:421-443
[10] Lowe A B, Wang R, Tiriveedhi V, Butko P,McCormick C L. Macromol. Chem. Phys., 2007, 208:2339-2347
[11] Yan J J, Ji W X, Chen E Q, Li Z C, Liang D H. Macromolecules, 2008, 41:4908-4913
[12] Lai J T, Filla D, Shea R. Macromolecules, 2002, 35:6754-6756
[13] Schilli C, Lanzendrfer M G, Müller A H E. Macromolecules, 2002, 35: 6819-6827
[14] Donovan M S, Lowe A B, Sanford T A, McCormick C L. J. Polym. Sci. Part A: Polym. Chem., 2003, 41:1262-1281
[15] Scales C W, Vasilieva Y A, Convertine A J, Lowe A B, McCormick C L. Biomacromolecules, 2005, 6:1846-1850
[16] Wang R, Lowe A B. J. Polym. Sci. Part A: Polym.Chem., 2007, 45:2468-2483
[17] Assem Y, Chaffey-Millar H, Barner-Kowollik C,Wegner G, Agarwal S. Macromolecules, 2007, 40:3907-3913
[18] Sumerlin B S, Donovan M S, Mitsukam Y, Lowe A B, McCormick C L. Macromolecules, 2001, 34:6561-6564
[19] Li Y, Lokitz B S, McCormick C L. Angew. Chem. Int. Ed. Engl., 2006, 118:5924-5927
[20] Lowe A B, McCormick C L. Chem. Rev., 2002, 102: 4177-4190
[21] Li Y T, Lokitz B S, Armes S P, McCormick C L. Macromolecules, 2006, 39:2726-2728
[22] Hernandez J R, Babin J, Zappone B, Lecommandoux S. Biomacromolecules, 2005, 6: 2213-2220
[23] Liu S, Weaver J V M, Tang Y, Billingham N C, Armes S P, Tribe K. Macromolecules, 2002, 35: 6121-6131
[24] Liu S, Ma Y, Armes S P, Perruchot C, Watts J F. Langmuir, 2002,18:7780-7784
[25] Joralemon M J, O'Reilly R K, Hawker C J, Wooley K L. J. Am. Chem. Soc., 2005, 127:16892-16899
[26] Liu S Y, Weaver J V M, Save M, Armes S P. Langmuir, 2002, 18:8350-8357
[27] Li Y T, Lokitz B Z, McCormick C L. Macromolecules, 2006, 39:81-89
[28] Wei H, Chang C, Chen W Q, Cheng S X, Zhang X Z, Zhuo R X. Langmuir, 2008, 24:4564-4570
[29] Li Y T, Du J Z, Armes S P. Macromol. Rapid. Commun., 2009, 30:464-468
[30] Xu X W, Flores J D, MaCormick C L. Macromolecules, 2011, 44:1327-1334
[31] Buxton G A, Clarke N. Soft Matter, 2007, 3:1513-1517
[32] Zhang L, Bernard J, Davis T P, Stenzel M H. Biomacromolecules, 2007, 8:2890-2901
[33] Lokitz B S, York A W, Stempka J E, Treat N D, Li Y T, Jarrett W L, McCormick C L. Macromolecules, 2007, 40:6473-6480
[34] Zhu J L, Zhang X Z, Cheng H, Li Y Y, Cheng S X, Zhuo R X. J. Polym. Sci., Part A: Polym. Chem., 2007, 45: 5354-5364
[35] Li Y T, Wei H, Armes S P. Angew. Chem. Int. Ed., 2010, 49: 4042-4046
[36] Kataoka K, Harada A, Nagasaki Y. Adv. Drug Deliv. Rev., 2001, 47: 113-131
[37] Bae K H, Lee Y H, Park T G. Biomacromolecules, 2007, 8, 650-656
[38] Lee E S, Bae Y H. J. Control Release, 2003, 91: 103-113
[39] Licciardim T, Giammona G, Du J Z. Polymer, 2006, 47:2946-2955
[40] Xu S J, Luo Y, Ralph G. Bioorg. Med. Chem. Lett., 2009, 19: 1030-1034
[41] Yang H M, Park C W, Woo M A, Kim M I, Jo Y M, Park H G, Kim J D. Biomacromolecules, 2010, 11:2866-2872
[42] Du W J, Nystrm A M, Zhang L, Powell K T, Li Y T, Cheng C, Wickline S A, Wooley K L. Biomacromolecules, 2008, 9:2826-2833
[43] Peng H, Blakey I, Dargaville B, Rasoul F, Rose S, Whittaker A K. Biomacromolecules, 2009,10:374-381
[44] Müllner M, Schallon A, Walther A, Freitag R, Müller A H E. Biomacromolecules, 2010, 11:390-396
[45] Jaramillo T F, Baeck S H, Cuenya B R, McFarland E W. J. Am. Chem. Soc., 2003, 125:7148-7149
[46] Cuenya B R, Baeck S H, Jaramillo T F, McFarland E W. J. Am. Chem. Soc., 2003, 125:12928-12934
[47] Lu Y, Zhang B Y. Angew. Chem. Int. Ed., 2006, 45: 813-816
[48] Li L Y, He W D, Li J, Pan T T, Sun X L, Ding Z L. Biomacromolecules, 2010, 11:1882-1890
[49] Sugihara S, Ito S, Irie S, Ikeda I. Macromolecules, 2010, 43: 1753-1760
[50] Fujii S, Cai Y, Weaver J V M, Armes S P. J. Am. Chem. Soc., 2005, 127:7304-7305

[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[5] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[6] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[7] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[8] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[9] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[10] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[11] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[12] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[13] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[14] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[15] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.