中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

The Role of Aliphatic Chains in Pyrrole-Imidazole Polyamides and Their Conjugates Binding to DNA

Jiang Shikun1, Wang Pu1, Wu Yanling2, Zhang Wen1   

  1. 1. Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China;
    2. Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
  • Received: Revised: Online: Published:
  • Contact: Wang Pu, Zhang Wen E-mail:wzhang63@zjut.edu.cn; wangpu@zjut.edu.cn
PDF ( 780 ) Cited
Export

EndNote

Ris

BibTeX

The pyrrole-imidazole (Py-Im) polyamides represent the only available class of synthetic small molecules which can be designed to recognize virtually any predetermined B-DNA sequence in minor groove and permeate into nucleus to regulate gene expression in vitro & in vivo due to affinities and specificities, and equal or exceed natural eukaryotic transcriptional regulatory proteins. They are mainly composed of N-methylpyrrole (Py), N-methylimidazole (Im), N-methyl-3-hydroxypyrrole (Hp) amino acids and aliphatic chain compounds including aliphatic amino acids. In these moieties, an aliphatic chain as a part of constructing polyamides and their conjugates plays a very important role in extending and specifically recognizing predetermined DNA sequences, linking functioned bioactive molecules to polyamides, and gene regulation. Understanding the role of aliphatic chains in polyamides and their conjugates may help us to better design suitable polyamides to be applied in DNA recognition,which can speed up research of polyamides as a gene-targeted clinical drug. In this paper, we review the application of aliphatic chains of polyamides and their conjugates in polyamides binding to B-DNA minor groove and analyze existing problems.

Contents
1 Introduction
2 The effect of γ-aminobutyric acid and its structural variants on interaction of polyamides with DNA
2.1 Role of γ-aminobutyric acid in DNA recognition by polyamides
2.2 The effect of structural modification with γ-aminobutyric acid on DNA recognition affinity and specificity by polyamides
2.3 The effect of cyclic polyamides linked by γ-aminobutyric acid on DNA recognition
3 The effect of β-alanine and its structural variants on interaction of polyamides with DNA
3.1 Role of β-alanine in DNA recognition by polyamides
3.2 The influence of β-alanine structural modification on DNA recognition by polyamides
4 Role of aliphatic chains in unusual structural polyamides
5 Role of the linkers of polyamides in biological application
5.1 Role of the linkers in polyamide-fluorophore conjugates
5.2 Role of the linkers in polyamide-alkylating agent conjugates
5.3 Role of the linkers of polyamides in gene regulation
6 Conclusion and outlook

 

CLC Number: 

[1] Opalinskal J B, Gewirtz A M. Nat. Rev. Drug Discov., 2002, 1: 503-514
[2] Braasch D A, Corey D R. Biochemistry, 2002, 41: 4503-4510
[3] Scherer L J, Rossi J J. Nat. Biotechnol., 2003, 21: 1457-1465
[4] Rebar E J, Huang Y, Hickey R, Nath A K, Meoli D, Nath S, Chen B, Xu L, Liang Y, Jamieson A C, Zhang L, Spratt S K, Case C C, Wolffe A. Nat. Med., 2002, 8: 1427-1432
[5] Qin X F, An D S, Irvin S Y, Baltimore C D. Proc. Natl. Acad. Sci. USA, 2003, 100: 183-188
[6] Gottesfeld J M, Neely L, Trauger J W, Baird E E, Dervan P B. Nature, 1997, 387: 202-205
[7] Denison C, Kodadek T. Chem. Biol., 1998, 5: 129-145
[8] Pelton J G, Wemmer D E. Proc. Natl. Acad. Sci. USA, 1989, 86: 5723-5727
[9] Wade W S, Mrksich M, Dervan P B. J. Am. Chem. Soc., 1992, 114: 8783-8794
[10] White S, Szewczyk J W, Turner J M, Baird E E, Dervan P B. Nature, 1998, 391: 468-471
[11] Dervan P B. Bioorg. Med. Chem., 2001, 9: 2215-2235
[12] Dervan P B, Edelson B S. Curr. Opin. Struct. Biol., 2003, 13: 284-299
[13] Philips B J, Chang A Y, Dervan P B, Beerman T A. Mol. Pharmacol., 2005, 67(3): 877-882
[14] Wang Y D, Dziegielewski J, Wurtz N R, Dziegielewska B. Nucl. Acids Res., 2003, 31(4): 1208-1215
[15] Gottesfeld J M, Belitsky J M, Melander C, Dervan P B, Luger K. J. Mol. Biol., 2002, 321: 249-263
[16] Wittung-Stafshede P. Science, 1998, 281: 657-658
[17] Dension C, Kodadek T. Chem. Biol., 1998, 5: R129-R145
[18] Oyoshi T, Kawakami W, Narita A, Bando T, Sugiyama H. J. Am. Chem. Soc., 2003, 125: 4752-4754
[19] Edayathumangalam R S, Weyermannb P, Dervan P B, Gottesfeld J M, Luger K. J. Mol. Biol., 2005, 345: 103-114
[20] Coull J J, He G C, Melander C, Rucker V C, Dervan P B. J. Virol., 2002, 76(23): 12349-12354
[21] Mapp A K, Ansari A Z, Ptashne M, Dervan P B. Proc. Natl. Acad. Sci. USA, 2000, 97(8): 3930-3935
[22] Dickinson L A. Proc. Natl. Acad. Sci. USA, 1998, 95: 12890-12895
[23] Dickinson L A, Burnett R, Melander C, Edelson B S, Arora P S, Dervan P B, Gottesfeld J M. Chem. Biol., 2004, 11:1583-1594
[24] Nickels N G. Nucleic Acids Res., 2007, 35(2): 363-370
[25] Shinohara K, Sasaki S, Minoshima M, Bando T, Sugiyama H. Nucleic Acids Res., 2006, 34: 1189-1195
[26] Shinohara K, Bando T, Sasaki T, Sakakibara Y, Minoshima M, Sugiyama H. Cancer Sci., 2006, 97: 219-225
[27] Bando T, Fujimoto J, Minoshima M, Shinohara K, Sasaki S, Kashiwazaki G, Mizumura M, Sugiyama H. Bioorg. Med. Chem., 2007, 15: 6937-6942
[28] Minoshima M, Bando T, Sasaki S, Shinohara K, Shimizu T, Fujimoto J, Sugiyama H. J. Am. Chem. Soc., 2007, 129: 5384-5390
[29] Bando T, Sugiyama H. Acc. Chem. Res., 2006, 39: 935-944
[30] Bando T, Narita A, Asada K, Ayame H, Sugiyama H. J. Am. Chem. Soc., 2004, 126: 8948-8955
[31] Fukasawa A, Aoyama T, Nagashima T, Fukuda N, Ueno T, Sugiyama H, Nagase H, Matsumoto Y. Biopharm. Drug Dispos., 2009, 30: 81-89
[32] Nagashima T, Aoyama T, Yokoe T,Fukasawa A, Fukuda N, Ueno T, Sugiyama H, Nagase H, Matsumoto Y. Biol. Pharm. Bull., 2009, 32(5): 921-927
[33] Wang X F, Nagase H, Watanabe T, Nobusue H, Suzuki T, Asami Y, Shinojima Y, Kawashima H, Takagi K, Mishra R, Igarashi J, Kimura M, Takayama T, Fukuda N, Sugiyama H. Cancer Sci., 2010, 101: 759-766
[34] Matsuda H, Fukuda N, Ueno T, Katakawa M, Wang X, Watanabe T, Matsui S, Aoyama T, Saito K, Bando T, Matsumoto Y, Nagase H, Matsumoto K, Sugiyama, H. Kidney International, 2011, 79: 46-56
[35] Ehley J A, Melander C, Herman D, Baird E E, Ferguson H A, Goodrich J A, Dervan P B, Gottesfeld J M. Mol. Cell. Biol., 2002, 22(6): 1723-1733
[36] Dervan P B, Poulin-Kerstien A T, Fechter E J, Edelson B S. Top. Curr. Chem., 2005, 253: 1-31
[37] Marques M A, Doss R M, Urbach A R, Dervan P B. Helv. Chim. Acta, 2002, 85: 4485-4517
[38] Walker W L, Kopka M L, Goodsell D S. Biopolymers, 1997, 44: 323-334
[39] Renneberg D, Dervan P B. J. Am. Chem. Soc., 2003, 125: 5707 -5716
[40] Geierstanger B H, Wemmer D E. Annu. Rev. Biophys. Biomol. Struct., 1995, 24: 463-493
[41] White S, Baird E E, Dervan P B. Chem. Biol., 1997, 4: 569-576
[42] Kielkopf C L, White S, Szewczyk J W, Turner J M, Baird E E, Dervan P B, Rees D C. Science, 1998, 282: 111-115
[43] Trauger J W, Baird E E, Dervan P B. Nature, 1996, 382: 559-561
[44] Geierstanger B H, Jacobsen J P, Mrksich M, Dervan P B, Wemmer D E. Biochemistry, 1994, 33: 3055-3062
[45] Mrksich M, Dervan P B. J. Am. Chem. Soc., 1993, 115: 2572-2576
[46] Mrksich M, Parks M E, Dervan P B. J. Am. Chem. Soc., 1994, 116: 7983-7988
[47] Swally S E, Baird E E, Dervan P B. J. Am. Chem. Soc., 1999, 121: 1113-1120
[48] De Clairac R P L, Geierstanger B H, Mrksich M, Dervan P B, Wemmer D E. J. Am. Chem. Soc., 1997, 119: 7909-7916
[49] Herman D M, Baird E E, Dervan P B. J. Am. Chem. Soc., 1998, 120: 1382-1391
[50] Dose C, Farkas M E, Chenoweth D M, Dervan P B. J. Am. Chem. Soc., 2008, 130: 6859-6866
[51] Farkas M E, Li B C, Dose C, Dervan P B. Bioorg. Med. Chem., 2009, 19: 3919-3923
[52] Zhang W, Minoshima M, Sugiyama H. J. Am. Chem. Soc., 2006, 128: 14905-14912
[53] Trauger J W, Baird E E, Mrksich M, Dervan P B. J. Am. Chem. Soc., 1996, 118: 6160-6166
[54] Zhang W, Bando T, Sugiyama H. J. Am. Chem. Soc., 2005, 128: 8766-8776
[55] Cho J, Parks M E, Dervan P B. Proc. Natl. Acad. Sci. USA, 1995, 92: 10389-10392
[56] Zhang Q, Dwyer T J, Tsui V, Case D A, Cho J Y, Dervan P B, Wemmer D E. J. Am. Chem. Soc., 2004, 126: 7958-7966
[57] Marques M A, Doss R M, Urbach A R, Dervan P B. Helv. Chim. Acta, 2002, 85: 4485-4517
[58] Melander C, Herman D M, Dervan P B. Chem. Eur. J., 2000, 6: 4487-4497
[59] Parks M E, Baird E E, Dervan P B. J. Am. Chem. Soc., 1996, 118: 6147-6152
[60] Kielkopf C L, Baird E E, Dervan P B, Rees D C. Nat. Struct. Biol., 1998, 5: 104-109
[61] Kelly J J, Baird E E, Dervan P B. Proc. Natl. Acad. Sci. USA, 1996, 93: 6981-6985
[62] Turner J M, Swalley S E, Baird E E, Dervan P B. J. Am. Chem. Soc., 1998, 120: 6219-6226
[63] Turner J M, Baird E E, Dervan P B. J. Am. Chem. Soc., 1997, 119: 7636-7644
[64] Swalley S E, Baird E E, Dervan P B. Chem. Eur. J., 1997, 3: 1600-1607
[65] Trauger J W, Baird E E, Dervan P B. J. Am. Chem. Soc., 1998, 120: 3534-3535
[66] De Clairac R P L, Seel C J, Geierstanger B H, Mrksich M, Baird E E, Dervan P B, Wemmer D E. J. Am. Chem.Soc., 1999,121: 2956-2964
[67] Floreancig P E, Swalley S E, Trauger J W, Dervan P B. J. Am. Chem. Soc., 2000, 122: 6342-6350
[68] Jiang S K, Wu Y L, Zhang W. The 6th National Conference on Chemical Biology and the International Symposium on the Interdisciplinary Science of Chemistry with Biology and Medicine. Xiamen: Xiamen University Press, 2009. 269
[69] Greenberg W A, Baird E E, Dervan P B. Chem. Eur. J., 1998, 4: 796-805
[70] O'Hare C C, Uthe P, Mackay H, Blackmon K, Jones J, Brown T, Nguyen B, Wilson W D, Lee M, Hartley J A. Biochemistry, 2007, 46: 11661-11670
[71] Herman D M, Baird E E, Dervan P B. Chem. Eur. J., 1999, 5: 975-983
[72] Kers I, Dervan P B. Bioorg. Med. Chem., 2002, 10: 3339-3349
[73] Weyermann P, Dervan P B. J. Am. Chem. Soc., 2002, 124: 6872-6878
[74] Tao Z F, Saito I, Sugiyama H. J. Am. Chem. Soc., 2000, 122: 1602-1608
[75] Belitsky J M, Leslie S J, Arora P S, Beerman T A, Dervan P B. Bioorg. Med. Chem., 2002, 10: 3313-3318
[76] Crowley K S, Phillion D P, Woodard S S, Schweitzer B A, Singh M, Shabany H, Burnette B, Hippenmeyer P, Heitmeier M, Bashkin J K. Bioorg. Med. Chem., 2003, 13: 1565-1570
[77] Best T P, Edelson B S, Nickols N G, Dervan P B. Proc. Natl. Acad. Sci. USA, 2003, 100: 12063-12068
[78] Rucker V C, Foister S, Melander C, Dervan P B. J. Am. Chem. Soc., 2003, 125: 1195-1202
[79] Edelson B S, Best T P, Olenyuk B, Nickols N G, Dose R M, Foister S, Heckel A, Dervan P B. Nucl. Acids Res., 2004, 32: 2802-2818
[80] Fujimoto J, Bando T, Minoshima M, Kashiwazaki G, Nishijima S, Shinohara K, Sugiyama H. Bioorg. Med. Chem., 2008, 16: 9741-9744
[81] Hsu C F, Dervan P B. Bioorg. Med. Chem. Lett., 2008, 18: 5851-5855
[82] Chenoweth D M, Viger A, Dervan P B. J. Am. Chem. Soc., 2007, 129: 2216-2217
[83] Fechter E J, Olenyuk B, Dervan P B. J. Am. Chem. Soc., 2005, 127: 16685-16691
[84] Philips B J, Chang A Y, Dervan P B, Beerman T A. Mol. Pharmacol., 2005, 67: 877-882
[85] Rucker V C, Dunn A R, Sharma S, Dervan P B, Gray H B. J. Phys. Chem. B, 2004, 108: 7490-7494
[86] Wurtz N R, Dervan P B. Chem. Biol., 2000, 7: 153-161
[87] Farkas M E, Tsai S M, Dervan P B. Bioorg. Med. Chem., 2007, 15: 6927-6936
[88] Sasaki S, Minoshima M, Fujimoto J, Shinohara K, Bando T, Sugiyama H. Nucleic Acids Symposium Series, 2007, 51: 265-266
[89] Sasaki S, Bando T, Minoshima M, Shinohara K, Sugiyama H. Chem. Eur. J., 2008, 14: 864-870
[90] Kashiwazaki T, Bando T, Shinohara K, Minoshima M, Kumamoto H, Nishijima S, Sugiyama H. Bioorg. Med. Chem., 2010, 18: 2887-2893
[91] Ansari A Z, Mapp A K, Nguyen D H, Dervan P B, Ptashne M. Chem. Biol., 2001, 8: 583-592
[92] Maeshima K, Janssen S, Laemmli U K. EMOB J., 2001, 12: 3218-3228
[93] Arora P S, Ansari A S, Best T P, Ptashne M, Dervan P B. J. Am. Chem. Soc., 2002, 124: 13067-13071
[94] Flores L V, Staples A M, Mackay H, Howard C M, Uthe P B, Sexton J S, Buchmueller K L, Wilson W D, O'Hare C, Kluza J, Hochhauser D, Hartley J A, Lee M. ChemBioChem, 2006, 7: 1722-1729
[95] Stafford R L, Arndt H, Brezinski M L, Ansari A Z, Dervan P B. J. Am. Chem. Soc., 2007, 129: 2660-2668
[96] Stafford A L, Dervan P B. J. Am. Chem. Soc., 2007, 129: 14026-14033
[97] Muzikar K A, Nickols N G, Dervan P B. Proc. Natl. Acad. Sci. USA, 2009, 106: 16598-16603
[98] Nguyen-Hackley D H, Ramm E, Taylor C M, Joung J K, Dervan P B, Pabo C O. Biochemistry, 2004, 43: 3880-3890
[99] Yao E, Fukuda1 N, Ueno1 T, Matsuda H, Nagase H, Matsumoto Y, Sugiyama H, Matsumoto1 K. Cardiovascular Research, 2009, 81: 797-804
[100] Endo M, Katsuda Y, Hidaka K, Sugiyama H. J. Am. Chem. Soc., 2010, 132: 1592-1597
[101] Shinohara K, Bando T, Sugiyama H. Anti-Cancer Drug, 2010, 21: 228-242

[1] Zhang Jianjun, Gao Yuan, Sun Wanjin. Albumin as Drug Carriers [J]. Progress in Chemistry, 2011, 23(8): 1747-1754.
[2] He Naipu, He Yufeng, Wang Rongmin, Song Pengfei, Zhou Yun. Protein Polymer Conjugates [J]. Progress in Chemistry, 2010, 22(12): 2388-2396.
[3] . Structures and Functions of Metalloporphyrin Protein Conjugates [J]. Progress in Chemistry, 2010, 22(10): 1952-1963.
[4] . "Click Chemistry" and Its Growing Applications in Biomedical Field [J]. Progress in Chemistry, 2010, 22(0203): 417-426.
[5] Wu Dimao,Ju Yong**. Biological and Physiological Functions of Bile Acids Conjugates [J]. Progress in Chemistry, 2007, 19(04): 544-556.
[6] Huang Lei,Zhao Fuqun,Huang Xin,Zhang Fushi**. Study of Photoimmunoconjugates [J]. Progress in Chemistry, 2007, 19(04): 527-534.
[7] Jin Peiyuan, Ju Yong**. Design, Synthesis and Biological Activity of novel Steroidal Bioconjugates [J]. Progress in Chemistry, 2007, 19(012): 1883-1895.
[8] Qiang Ma1|Yong Ju1,2**|Yufen Zhao1. Chemical Synthesis of Glycoconjugates [J]. Progress in Chemistry, 2006, 18(09): 1110-1120.
[9]

Guo Zhongwu, Wang Laixi

. Progress and Trends on Carbohydrate Research [J]. Progress in Chemistry, 1995, 7(01): 10-.