中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Application of Mesoporous Silica Nanoreservoir in Smart Drug Controlled Release Systems

Luo Zhong, Cai Kaiyong, Zhang Beilu, Duan Lin, Liu Aiping, Gong Duan   

  1. Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
  • Received: Revised: Online: Published:
  • Contact: Cai Kaiyong E-mail:kaiyong_cai@cqu.edu.cn
PDF ( 1817 ) Cited
Export

EndNote

Ris

BibTeX

To develop novel cell microenvironment stimuli responsive smart controlled-release delivery systems is one of the current common interests of material science, pharmacology and clinical medicine. It's purpose includes to look for proper drug carriers, to enhance the safety and availability of drugs, and to reduce the side effect of drugs' toxicity. The article reviewed the research development of functional mesoporous silica nanoparticles (MSNs) composites for applications in the field of biomedicine. MSNs composites could be modified via specific chemical reactions, biological methods and physical approaches, to achieve not only targeting based on cell-specific recognition, but also site pointed, timed and quantitatively controlled drug release to malignant cells via a “biological explosion” approach. It presents wide potential applications in the fields of controlled drug release, targeted cancer therapy and targeted gene delivery. Meanwhile, this article systematically analyzed and summarized various methods for the fabrication of different smart mesoporous silica nanoreservoir and their mechanisms for smart controlled drug release,including inorganic nanoparticles sealed MSNs smart controlled release system, organic molecules sealed MSNs smart controlled release system,self-responsive novel molecular switch based on MSNs controlled release system, which affords references and ideas for designing novel stimuli responsive nanoreservoir system based on MSNs.

Contents
1 Introduction
2 The interactions between MSNs and cells
2.1 Biocompatibility assay of MSNs
2.2 The mechanism of the interactions between MSNs and cells
3 The application types of MSNs as drug nanoreservoirs in smart controlled release
3.1 The concept of MSNs nanoreservoirs
3.2 Inorganic nanoparticles sealed MSNs controlled release system
3.3 Specific responsive organic molecules sealed MSNs controlled release system
3.4 Self-responsive novel molecular switch based on MSNs nanoreservoirs
3.5 Other types of MSNs controlled release system
4 Model drugs used in MSNs controlled release system
5 Conclusion and outlook

CLC Number: 

[1] Bangham A D, Standish M M. J. Mol. Biol., 1965, 13: 238-252
[2] Langer R, Brem H, Falterman K, Klein M, Folkman J. Science, 1976, 193: 70-72
[3] Santini J T, Cima M J, Langer R. Nature, 1999, 397: 335-338
[4] Lee K Y, Peters M C, Anderson K W, Mooney D J. Nature, 2000, 408: 998-1000
[5] Hill H D, Macfarlane R J, Senesi A J, Lee B, Park S Y, Mirkin C A. Nano Lett., 2008, 8(8): 2341-2344
[6] Tayalia P, Mooney D J. Adv. Mater., 2009, 21: 3269-3285
[7] Qin J, Asempah I, Laurent S, Fornara A, Muller R N, Muhammed M. Adv. Mater., 2009, 21: 1354-1357
[8] Bajpai A K, Shukla S K, Bhanu S, Kankane S. Prog. Polym. Sci., 2008, 33: 1088-1118
[9] Brown L, Munoz C, Siemer L, Edelman E, Langer R. Diabetes, 1986, 35: 692-697
[10] Kim D, MacConell L, Zhuang D, Kothare P A, Trautmann M, Fineman M, Taylor K. Diabetes Care, 2007, 30: 1487-1493
[11] Deshpande A A, Shah N H, Rhodes C T, Malick W. Pharm. Res., 1997, 14: 815-819
[12] Han K, Lee K D, Gao Z G, Park J S. J. Control. Release, 2001, 75: 259-269
[13] Gao Z H, Crowley W R, Shukla A J, Johnson J R, Reger J F. Pharm. Res., 1995, 12: 864-868
[14] Ganta S, Devalapally H, Shahiwala A, Amiji M. J. Control. Release, 2008, 126: 187-204
[15] Jain R K. Adv. Drug. Deliv. Rev., 2001, 46:149-168
[16] Rapoport N. Prog. Polym. Sci., 2007, 32: 962-990
[17] Tahrani A A, Piya M K, Kennedy A, Barnett A H. Pharm. Therap., 2010, 125(2):328-361
[18] Sukumaran S, Almon R R, DuBois D C, Jusko W J. Adv. Drug. Deliv. Rev., 2010, 62: 904-917
[19] GuhaSarkar S, Banerjee R. J. Control. Release, 2010,148: 147-159
[20] Caldorera-Moore M, Peppas N A. Adv. Drug. Deliv. Rev., 2009, 61: 1391-1401
[21] Qin J, Asempah I, Laurent S, Fornara A, Muller R N, Muhammed M, Slowing I I, Vivero-Escoto J L, Wu C W, Lin V S Y. Adv. Drug. Deliv. Rev., 2008, 60: 1278-1288
[22] Trewyn B G, Slowing I I, Giri S, Chen H T, Lin V S Y.Acc. Chem. Res., 2007, 40: 846-853
[23] Mayor S, Pagano R E.Nat. Rev. Mol. Cell. Biol., 2007, 8: 603-612
[24] Rejman J, Oberle V, Zuhorn L S, Hoekstra D. Biochem. J., 2004, 377: 159-169
[25] Xing X, He X, Peng J, Wang K, Tan W. J. Nanosci. Nanotechnol., 2005, 5: 1688-1693
[26] Mornet S, Lambert O, Duguet E, Brisson A. Nano Lett., 2005, 5: 281-285
[27] Giri S, Trewyn B G, Stellmaker M P, Lin V S Y. Angew. Chem. Int. Ed., 2005, 44: 5038-5044
[28] Lu J, Liong M, Zink J I, Tammanoi F. Small, 2007, 3: 1341-1346
[29] Slowing I I, Trewyn B G, Lin V S Y. J. Am. Chem. Soc., 2007, 129: 8845-8849
[30] Slowing I I, Trewyn B G, Lin V S Y. J. Am. Chem. Soc., 2006, 128: 14792-14793
[31] Radu D R, Lai C Y, Jeftinija K, Rowe E W, Jeftinija S, Lin V S Y. J. Am. Chem. Soc., 2004, 126: 13216-13217
[32] Chung T H, Wu S H, Yao M, Lu C W, Lin V S Y, Hung Y, Mou C W, Chen Y C, Huang D M. Biomaterials, 2007, 28: 2959-2966
[33] Kim J S, Yoon T J, Yu K N, Noh M S, Woo M, Kim B G, Lee K H, Sohn B H, Park S B, Lee J K, Cho M H. J. Vet. Sci., 2006, 7: 321-326
[34] He Q J, Shi J L, Chen F, Zhu M, Zhang L X. Biomaterials, 2010, 31: 3335-3346
[35] Huang X, Zhuang J, Teng X, Li L, Chen D, Yan X, Tang F. Biomaterials, 2010, 31: 6142-6153
[36] Lin Y S, Haynes C L. J. Am. Chem. Soc., 2010, 132: 4834-4842
[37] He Q J, Zhang Z W, Gao F, Li Y P, Shi J L. Small, 2011, 7: 271-280
[38] Zhu M, Wang H X, Liu J Y, He H L, Hua X G, He Q J, Zhang L X, Ye X J, Shi J L. Biomaterials, 2011, 32: 1986-1995
[39] Huang D M, Hung Y, Ko B S,Hsu S C, Chen W H, Chien C L, Tsai C P, Kuo C T, Kang J C, Yang C S, Mou C Y, Chen Y C. FASEB J., 2005, 19: 2014-2016
[40] Kim T W, Chung P W, Slowing I I, Tsunoda M, Yeung E S, Lin V S Y. Nano Lett., 2008, 8: 3724-3727
[41] Lu C W, Hung Y, Hsiao J K, Yao M, Chung T H, Lin V S Y, Wu S H, Hsu S C, Liu H M, Mou C Y, Yang C S, Huang D M, Chen Y C. Nano Lett., 2007, 7:149-154
[42] Chung T X, Wu S H, Yao M, Lu C W, Lin Y S, Hung Y, Mou C Y, Chen Y C, Huang D M. Biomateirals, 2007, 28: 2959-2966
[43] Vallet-Regi M, Rámila A, del Real R P, Pérez-Pariente J. Chem. Mater., 2001, 13: 308-311
[44] Mal N K, Fujiwara M, Tanaka Y. Nature, 2003, 421: 350-353
[45] Zhu Y C, Fujiwara M. Angew. Chem. Int. Ed., 2007, 119: 2291-2294
[46] Lai C Y, Trewyn B G, Jeftinija D M, Jeftinija K, Xu S, Jeftinija S, Lin V S Y. J. Am. Chem. Soc., 2003,125: 4451-4459
[47] Kim H, Kim S, Park C, Lee H, Park H J, Kim C. Adv. Mater., 2010, 22: 4280-4283
[48] Zhao W R, Gu J L, Zhang L X, Chen H R, Shi J L. J. Am. Chem. Soc., 2005, 127: 8916-8917
[49] He Q J, Zhang J M, Shi J L, Zhu Z Y, Zhang L X, Bu W B, Guo L M, Chen Y. Biomaterials, 2010, 31: 1085-1092
[50] Giljohann D A, Seferos D S, Daniel W L, Massich M D, Patel P C, Mirkin C A. Angew. Chem. Int. Ed., 2010, 49: 3280-3294
[51] Torney F, Trewyn B G, Lin V S Y, Wang K. Nat. Nanotechnol., 2007, 2: 295-300
[52] Vivero-Escoto J L, Slowing I I, Wu C W, Lin V S Y. J. Am. Chem. Soc., 2009, 131: 3462-3463
[53] Liu R, Zhang Y, Zhao X, Agarwal A, Mueller L J, Feng P Y. J. Am. Chem. Soc., 2010, 132: 1500-1501
[54] Han G, You C C, Kim B J, Turingan R S, Forbes N S, Martin C T, Rotello V M. Angew. Chem. Int. Ed., 2006, 45: 3165-3169
[55] Zhu Y F, Shi J L, Shen W H, Dong X P, Feng J W, Ruan M L, Li Y S. Angew. Chem. Int. Ed., 2005, 44: 5083-5087
[56] Park C, Oh K, Lee S C, Kim C. Angew. Chem. Int. Ed., 2007, 119: 1455-1457
[57] Zhao Y, Trewyn B G, Slowing I I, Lin V S Y. J. Am. Chem. Soc., 2009, 131: 8398-8400
[58] Bernardos A, Aznar E, Marcós M D, Martínez-Mańéz R, Sancenón F, Soto J, Barat J M, Amorós P. Angew. Chem. Int. Ed., 2009, 121: 5884-5887
[59] Climent E, Bernardos A, Martínez-Mańéz R, Maquieira A, Marcos M D, Pastor-Navarro N, Puchades R, Sancenón F, Soto J, Amorós P. J. Am. Chem. Soc., 2009, 131: 14075-14080
[60] Climent E, Martínez-Mańéz R, Sancenón F, Marcos M D, Soto J, Maquieira A, Amorós P. Angew. Chem. Int. Ed., 2010, 49: 4734-4737
[61] Liu J W, Stace-Naughton A, Jiang X M, Brinker C J. J. Am. Chem. Soc., 2009, 131: 1354-1355
[62] Liu J W, Jiang X M, Ashley C, Brinker C F. J. Am. Chem. Soc., 2009, 131: 7567-7569
[63] Carnes E C, Harper J C, Ashley C E, Lopez D M, Brinker L M, Liu J W, Singh S, Brozik S M, Brinker C F.J. Am. Chem. Soc., 2009, 131: 14255-14257
[64] Schlossbauer A, Kecht J, Bein T. Angew. Chem. Int. Ed., 2009, 48: 3092-3095
[65] Prosperi D, Morasso C, Tortora P, Monti D, Bellini T. Chem. Biochem., 2007, 8:1021-1028
[66] Kojima N, Matsuo T, Sakai Y. Biomaterials, 2006, 27(28): 4904-4910
[67] Schlossbauer A, Warncke S, Gramlich P M E, Kecht J, Manetto A, Carell T, Bein T. Angew. Chem. Int. Ed., 2010, 49: 4734-4737
[68] Hu Y, Cai K Y, Luo Z, Jandt K D. Adv. Mater., 2010, 22: 4146-4150
[69] Luo Z, Cai K Y, Hu Y, Zhao L, Liu P, Yang W H. Angew. Chem. Int. Ed., 2011, 50: 640-643
[70] Hernandez R, Tseng H R, Wong J W, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2004, 126: 3370-3371
[71] Nguyen T D, Tseng H R, Celestre P C, Flood A H, Liu Y, Stoddart J F, Zink J I. Proc. Natl. Acad. Sci. USA, 2005, 102: 29:10029-10034
[72] Angelos S, Yang Y W, Patel K, Stoddart J F, Zink J I. Angew. Chem. Int. Ed., 2008, 47: 2222-2226
[73] Angelos S, Khashab N M, Yang Y W, Trabolsi A, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 12912-12914
[74] Thomas C R, Ferris D P, Lee J H, Choi E, Cho M H, Kim E S, Stoddart J F, Shin J S, Cheon J, Zink J I. J. Am. Chem. Soc., 2010, 132: 10623-10625
[75] Patel K, Angelos S, Dichtel W R, Coskun A, Yang Y W, Zink J I, Stoddart J F.J. Am. Chem. Soc., 2008, 130: 2382-2383
[76] Ferris D P, Zhao Y L, Khashab N M, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 1686-1688.
[77] Du L, Liao S J, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc.,2009, 131: 15136-15142
[78] Meng H, Xue M, Xia T, Zhao Y L, Tamanoi F, Stoddart J F, Zink J I, Nel A E. J. Am. Chem. Soc., 2010, 132: 12690-12697
[79] Zhao Y L, Li Z, Kabehie S, Botros Y Y, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2010, 132: 13016-13025
[80] Park C, Lee K, Kim C. Angew. Chem. Int. Ed., 2009, 48: 1275-1278
[81] Park C, Kim H, Kim S, Kim C. J. Am. Chem. Soc., 2009, 131: 16614-16615
[82] Liu R, Zhao X, Wu T, Feng P Y. J. Am. Chem. Soc., 2008, 130: 14418-14419
[83] Liu R, Zhang Y, Feng P Y. J. Am. Chem. Soc., 2009, 131: 15128-15129
[84] Casasús R, Climent E, Marcos M D, Martínez-Máez R, Sancenón F, Soto J, Amorós P, Cano J, Ruiz E. J. Am. Chem. Soc., 2008, 130: 1903-1917

[1] Shuhui Li, Qianqian Li, Zhen Li. From Single Molecule to Molecular Aggregation Science [J]. Progress in Chemistry, 2022, 34(7): 1554-1575.
[2] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[3] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[4] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[5] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[6] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[7] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[8] Xie Zheng, Yifan Zhou, Siyuan Chen, Xiaoyun Liu, Liusheng Zha. Stimuli-Responsive Electrospun Nanofibers [J]. Progress in Chemistry, 2018, 30(7): 958-975.
[9] Zicheng Li, Gongke Li*, Yuling Hu*. Stimuli-Responsive Polymers in Biomedical Applications [J]. Progress in Chemistry, 2017, 29(12): 1480-1487.
[10] Wang Yun, Feng Anchao, Yuan Jinying. Application of Stimuli-Responsive Polymer in Catalyst Systems of Gold Nanoparticles [J]. Progress in Chemistry, 2016, 28(7): 1054-1061.
[11] Feng Yanyan, Jin Ming, Wan Decheng. A Bridge Spanning Microscopic to Macroscopic Assembly: Application of the Technique of Polymerization of Concentrated Emulsion [J]. Progress in Chemistry, 2016, 28(11): 1658-1663.
[12] Liang Jiamei, Feng Anchao, Yuan Jinying. Synthesis and Controllable Drug Release of Stimuli-Responsive Star Polymer [J]. Progress in Chemistry, 2015, 27(5): 522-531.
[13] Cheng Xinfeng, Jin Yong, Qi Rui, Fan Baozhu, Li Hanping. Stimuli-Responsive Degradable Polymeric Hydrogels [J]. Progress in Chemistry, 2015, 27(12): 1784-1798.
[14] Wang Jun, Zhang Afang. Peptide-Mediated Supramolecular Helical Polymers [J]. Progress in Chemistry, 2015, 27(10): 1413-1424.
[15] Liao Rongqiang, Liu Manshuo, Liao Xiali, Yang Bo. Cyclodextrin-Based Smart Stimuli-Responsive Drug Carriers [J]. Progress in Chemistry, 2015, 27(1): 79-90.