中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Biotransformation of Limonene by Microorganisms

Li Houjin1, Lan Wenjian2   

  1. 1. School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China;
    2. School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
  • Received: Revised: Online: Published:
  • Contact: Lan Wenjian E-mail:lanwj@mail.sysu.edu.cn
PDF ( 1693 ) Cited
Export

EndNote

Ris

BibTeX

Limonene, a cheap and widely distributed monoterpene in nature, has important applications in daily chemical and pharmaceutical industries. In recent decades, the research and development of new products using limonene as the starting material continued to draw much attention. A number of literatures were concerned with the biotransformation of limonene which led to many oxygenated derivatives. These biotransformation products would be more valuable in the fields of cosmetics, food ingredients, drug, and chemical synthesis. This review provides a comprehensive summary of the microbial strains of limonene, their biotransformation products, and the main biotransformation pathways. The influence factors of biotransformation productivity are analyzed in detail. Some regio- and stereoselective biotransformation products are difficult to obtain through a routine chemical process. Hopefully, by optimizing the bioprocesses, the industrial production of these important compounds will become possible in the near future. In addition, the enzymes involved in the metabolic pathways of limonene, especially the monooxygenases and hydroxylases, also show an attractive prospect for their potential application in organic synthesis and industry.

Contents
1 Introduction
2 Microorganisms used in limonene biotransformation and their biotransformation products
3 Main microbial biotransformation pathways for limonene
4 Influence factors of productivity
4.1 Substrate toxicity
4.2 Low solubility
4.3 Strong volatility
4.4 Inhibiting effect of products
4.5 Culture condition
4.6 Simultaneous presence of multiple biotransfor-mation pathways
5 Conclusion and outlook

CLC Number: 

[1] Burdock G A. Fenaroli's Handbook of Flavour Ingredients. 3rd ed. Boca Raton: CRC Press, 1995. 107
[2] Trytek M, Kowalski P, Fiedurek J. Biotechnologia, 2003, (2): 206-217
[3] Trytek M, Paduch R, Fiedurek J, Kandefer-Szerszen M. Biotechnologia, 2007, (1): 135-155
[4] Sun J. Altern. Med. Rev. : A Journal of Clinical Therapeutic, 2007, 12 (3): 259-264
[5] Dhavalikar R S, Bhattacharyya P K. Indian J. Biochem., 1966, 3 (3): 144-157
[6] Dhavalikar R S, Rangachari P N, Bhattacharyya P K. Indian J. Biochem., 1966, 3 (3): 158-164
[7] Draczynska-Lusiak B, Siewinski A. J. Basic Microb., 1989, 29 (5): 269-275
[8] Van Rensburg E, Moleleki N, Van Der Walt J P, Botes P J, Van Dyk M S. Biotechnol. Lett., 1997, 19 (8): 779-782
[9] Noma Y, Yamasaki S, Asakawa Y. Phytochemistry, 1992, 31 (8): 2725-2727
[10] Divyashree M S, George J, Agrawal R. J. Food Sci. Tech., 2006, 43 (1): 73-76
[11] Menendez P, Garcia C, Rodriguez P, Moyna P, Heinzen H. Braz. Arch. Biol. Techn., 2002, 45 (2): 111-114
[12] Kraidman G, Mukherjee B B, Hill I D. Bacteriol. Proc., 1969, 69 : 63-67
[13] Demyttenaere J C R, Van Belleghem K, De Kimpe N. Phytochemistry, 2001, 57 (2): 199-208
[14] Maróstica M R Jr, Rocha e S T A A, Franchi G C, Nowill A, Pastore GM, Hyslop S. Food Chem., 2009, 116 (1): 8-12
[15] Maróstica M R, Pastore G M. Food Chem., 2007, 101 (1): 345-350
[16] Bicas J L, Barros F F C, Wagner R, Godoy H T, Pastore G M. J. Ind. Microbiol. Biot., 2008, 35 (9): 1061-1070
[17] Bicas J L, de Quadros CP, Neri-Numa I A, Pastore G M. Food Chem., 2010, 120 (2): 452-456
[18] Kaspera R, Krings U, Pescheck M, Sell D, Schrader J, Berger R G. Z. Naturforsch. C, 2005, 60 (5/6): 459-466
[19] De Oliveira B H, Strapasson R A. Braz. Arch. Biol. Techn., 2000, 43 (1): 11-14
[20] Trytek M, Fiedurek J. Biotechnol. Lett., 2005, 27 (3): 149-153
[21] Trytek M, Fiedurek J, Skowronek M. Food Technol. Biotech., 2009, 47 (2): 131-136
[22] Tan Q, Day D F. Appl. Microbiol. Biot., 1998, 49 (1): 96-101
[23] Adams A, Demyttenaere J C R, De Kimpe N. Food Chem., 2003, 80 (4): 525-534
[24] Pescheck M, Mirata M A, Brauer B, Krings U, Berger R G, Schrader J . J. Ind. Microbiol. Biot., 2009, 36 (6): 827-836
[25] Badee A Z M, Helmy S A, Morsy N F S. Food Chem., 2011, 126 (3): 849-854
[26] Rottava I, Cortina P F, Grando C E, Colla A R S, Martello E, Cansian R L, Toniazzo G, Treichel H, Antunes O A C, Oestreicher E G, de Oliveira D. Appl. Biochem. Biotech., 2010, 162 (3): 719-732
[27] Onken J, Berger R G. J. Biotechnol., 1999, 69 (2/3): 163-168
[28] 蓝文健(Lan W J), 李厚金(Li H J), 蔡创华(Cai C H), 周毅频(Zhou Y P), 林永成(Lin Y C). 中山大学学报自然科学版(Acta Scientiarum Naturalium Universitatis Sunyatseni), 2006, 45 (2): 126-128
[29] Chang H C, Oriel P. J. Food Sci., 1994, 59 (3): 660-662, 686
[30] Cheong T K, Oriel P J. Appl. Biochem. Biotech., 2000, 84/86 : 903-915
[31] Dhere S G, Dhavlikar R S. Science and Culture, 1970, 36 (5): 292
[32] 李厚金(Li H J), 蓝文健(Lan W J), 蔡创华(Cai C H), 周毅频(Zhou Y P), 林永成(Lin Y C). 分析化学(Chinese J. Anal. Chem. ), 2006, 34 (7): 946-950
[33] van Beilen J B, Holtackers R, Luescher D, Bauer U, Witholt B, Duetz W A. Appl. Environ. Microb., 2005, 71 (4): 1737-1744
[34] Menendez P, Rossini C, Neill S O, Soubes M, Heinzen H, Moyna P. Anales de la Asociacion Quimica Argentina, 2000, 88 (5/6): 79-82
[35] Bicas J L, Fontanille P, Pastore G M, Larroche C. J. Appl. Microbiol., 2008, 105 (6): 1991-2001
[36] Bicas J L, Fontanille P, Pastore G M, Larroche C. Process Biochem., 2010, 45 (4): 481-486
[37] Cadwallader K R, Braddock R J, Parish M E, Higgins D P. J. Food Sci., 1989, 54 (5): 1241-1245
[38] Devi J R, Bhattacharyya P K. Indian J. Biochem. Bio., 1977, 14 (3): 288-291
[39] Mirata M A, Heerd D, Schrader J. Process Biochem., 2009, 44 (7): 764-771
[40] Mars A E, Gorissen J P L, Van den Beld I, Eggink G. Appl. Microb. Biot., 2001, 56 (1/2): 101-107
[41] Speelmans G, Bijlsma A, Eggink G. Appl. Microb. Biot., 1998, 50 (5): 538-544
[42] Chatterjee T, Bhattacharyya D K. Appl. Microb. Biot., 2001, 55 (5): 541-546
[43] Van Der Werf M J, Swarts H J, De Bont J A M. Appl. Environ. Microbiol., 1999, 65 (5): 2092 -2102
[44] Duetz W A, Fjallman A H M, Ren SY, Jourdat C, Witholt B. Appl. Environ. Microbiol., 2001, 67 (6): 2829-2832
[45] Van der Werf M J, Keijzer P M, Van der Schaft P H. J. Biotechnol., 2000, 84 (2): 133-143
[46] Van Dyk M S, Van Rensburg E, Moleleki N. Biotechnol. Lett., 1998, 20 (4): 431-436
[47] Pinheiro L, Marsaioli A J. J. Mol. Catal. B- Enzym., 2007, 44 (2): 78-86
[48] Ghasemi Y, Mohagheghzadeh A, Moshavash M, Ostovan Z, Rasoul-Amini S, Morowvat M H, Ghoshoon M B, Raee M J, Mosavi-Azam S B. World J. Microb. Biot., 2009, 25 (7): 1301-1304
[49] Hamada H, Kondo Y, Ishihara K, Nakajima N, Hamada H, Kurihara R, Hirata T. J. Biosci. Bioeng., 2003, 96 (6): 581-584
[50] Marostica M R, Pastore G M. Quim. Nova, 2007, 30 (2): 382-387
[51] Marostica M R, Pastore G M. Food Sci. Biotechnol., 2009, 18 (4): 833-841
[52] Tian Shulan, Fitzgerald Meaghan. University of Minnesota. Biocatalysis, biodegradation Database. . http: //umbbd. msi. umn. edu/lim/lim_map. html
[53] Duetz W A, Bouwmeester H, Van Beilen J B, Witholt B. Appl. Microbiol. Biot., 2003, 61 (4): 269-277

[1] Hong Su, Yejun Han. Electroautotrophic Microorganisms:Uptaking Extracellular Electron and Catalyzing CO2 Fixation and Synthesis [J]. Progress in Chemistry, 2019, 31(2/3): 433-441.
[2] Xiaochun Tian, Xue'e Wu, Feng Zhao, Yanxia Jiang, Shigang Sun. Research on Mechanisms of Microbial Extracellular Electron Transfer by Electrochemical Integrated Technologies [J]. Progress in Chemistry, 2018, 30(8): 1222-1227.
[3] Li Zhongmin, Guo Lianghong. Environmental Occurrence and Toxicology of Fluorotelomer Alcohols [J]. Progress in Chemistry, 2016, 28(7): 993-1005.
[4] Wang Baiyun, Wang Xiaoyue, Wang Zhiwen, Chen Tao, Zhao Xueming. Redox Cofactor Metabolic Engineering with Escherichia coli [J]. Progress in Chemistry, 2014, 26(09): 1609-1618.
[5] Xiao Yong, Wu Song, Yang Zhaohui, Zheng Yue, Zhao Feng. Isolation and Identification of Electrochemically Active Microorganisms [J]. Progress in Chemistry, 2013, 25(10): 1771-1780.
[6] Wang Dexian, Wang Meixiang. Biotransformations of Three-Membered (Hetero) Cyclic Nitriles and Their Applications in Organic Synthesis [J]. Progress in Chemistry, 2010, 22(07): 1397-1402.
[7] Wang Mengfan Qi Wei Su Rongxin He Zhimin. Advances in Cross-Linked Enzyme Aggregates [J]. Progress in Chemistry, 2010, 22(01): 173-178.
[8] Ma Da-You. Biocatalytic Asymmetric Synthesis of beta-Hydroxy Acid derivatives [J]. Progress in Chemistry, 2008, 20(11): 1687-1693.