中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Hierarchical Nanostructures and Their Solution-Phase Synthesis

Liu Guodong1, Chen Dairong2   

  1. 1. Department of Chemistry and Chemical Engineering, Jining University, Jining 273155,China;
    2. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
  • Received: Revised: Online: Published:
  • Contact: Liu guodong E-mail:liugd001@hotmail.com
PDF ( 1338 ) Cited
Export

EndNote

Ris

BibTeX

The hierarchical nanostructures built from nanounits, such as nanoparticles, nanorods/wires/belts, and nanoplates/disks/sheets, which exhibit unique physical and chemical properties different from those of nanounits, have been widely investigated. To find and investigate the novel nanoarchitectures or hierarchical nanostructures for some functional compounds is still an interesting task not only in answering basic research questions but also in technological applications. This article reviews the recent progress of hierarchical nanomaterials research. In this article mesoporous material, hollow structures, aerogel and other typical hierarchical nanostructures are mainly introduced. A lot of useful solution-phase synthesis routes are classified according to the category, including hydro/solvothermal routes, template methods, solid spheres as precursors, structure-directed reagent assistant methods and irradiation of microwave reaction. The latest developments of hierarchical nanostructures prepared by above methods and their synthesis routes, mechanism are described in detail. And a brief outlook of potential applications of these new materials is also given.

Contents
1 Introduction
2 Typical hierarchical nanostructures
2.1 Mesoporous materials
2.2 Hollow structures
2.3 Aerogel
2.4 Other typical hierarchical nanostructures
3 Synthesis methods of hierarchical nanostructures
3.1 Hydro/solvothermal routes
3.2 Template methods
3.3 Solid spheres as precursors
3.4 Structure-directed reagent assistant methods
3.5 Irradiation of microwave reaction
4 Structure feather of hierarchical nanostructures and potential applications
5 Conclusion and outlook

CLC Number: 

[1] Heath J R. Nanoscale Materials, 1999, 32 : 388-388
[2] Alivisatos A P. Acc. Chem. Res., 2001, 34 : 257-264
[3] Ewers T D, Sra A K, Norris B C, Cable R E, Cheng C H, Shantz D F, Schaak R E. Chem. Mater., 2005, 17 : 514-520
[4] Mann S. Angew. Chem. Int. Ed., 2000, 39 : 3393-3406
[5] Yang H, Wu X L, Cao M H, Guo Y G. J. Phys. Chem. C, 2009, 113 : 3345-3351
[6] Brumbach M T, Alam T M, Kotula P G, McKenzie B B, Bunker B C. ACS Applied Materials & Interfaces, 2010, 2 : 778-787
[7] Kuang D B, Brezesinski T. J. Am. Chem. Soc., 2004, 126 : 10534-10535
[8] Yin Y D, Lu Y, Gates B, Xia Y N. J. Am. Chem. Soc., 2001, 123 : 8718-8729
[9] Morikawa M, Yoshihara M, Endo T, Kimizuka N. J. Am. Chem. Soc., 2005, 127 : 1358-1359
[11] Matsui H, Holtman C. Nano Lett., 2002, 2 : 887-889
[12] Fresco Z M, Suez I, Backer S A, Frechet J M J. J. Am. Chem. Soc., 2004, 126 : 8374-8375
[13] Gao J B, Yu A P, Itkis M E, Bekyarova E, Zhao B, Niyogi S, Haddon R C. J. Am. Chem. Soc., 2004, 126 : 16698-16699
[14] Ewers T D, Sra A K, Norris B C, Cable R E, Cheng C H, Shantz D F, Schaak R E. Chem. Mater., 2005, 17 : 514-520
[15] Wu C Z, Xie Y, Wang D, Yang J, Li T W. J. Phys. Chem. B, 2003, 107 : 13583-13587
[16] Ma Y R, Qi L M, Ma J M, Cheng H M. Cryst. Growth Des., 2004, 4 : 351-354
[17] Yu J, Yu X, Huang B, Zhang X, Dai Y. Cryst. Growth Des., 2009, 9 : 1474-1480
[18] Yang L X, Zhu Y J, Tong H, Liang Z H, Wang W W. Cryst. Growth Des., 2007, 7 : 2716-2719
[19] 徐如人(Xu R R), 庞文琴(Pang W Q). 无机合成与制备化学(Inorganic Synthesis and Preparative Chemistry ) 北京: 高等教育出版社(Beijing: Higher Education Press), 1999, 440-454
[20] Frasch J L B, Soulard M, Patarin J, Zana R. Langmuir, 2000, 16 : 9049-9057
[21] Zhang W P, Pinnavaia T. Chem. Mater., 1997, 9 : 2491-2498
[22] Walker S K, Joseph M, Zasadzinski A. Nature, 1997, 387 : 61-64
[23] Wu C G, Bein T. Chem. Commun., 1996, 925-926
[24] Lin W, Chen J, Sun Y, Pang W. Chem. Commun., 1995, 2367-2368
[25] Yang P, Zhao D, Margolese D. Nature, 1998, 396 : 152-155
[26] Boettcher S W, Fan J, Tsung C K, Shi Q H, Stucky G D. Acc. Chem. Res., 2007, 40 : 784-792
[27] Wan Y, Zhao D Y. Chem. Rev., 2007, 107 : 2821-2860
[28] Yan X H, Zhu P L, Fei J B, Li J B. Adv. Mater., 2010, 22 : 1283-1287
[29] Sauvage F, Di Fonzo F, Bassi A L, Casari C S, Russo V, Divitini G, Ducati C, Bottani C E, Comte P, Graetzel M. Nano Lett., 2010, 10 : 2562-2567
[30] Cao S W, Zhu Y J, Ma M Y, Li L, Zhang L. J. Phys. Chem. C, 2008, 112 : 1851-1856
[31] Wang C H, Shao C L, Zhang X T, Liu Y C. Inorg. Chem., 2009, 48 : 7261-7268
[32] Zhao W R, Chen H R, Li Y S, Li L, Lang M D, Shi J L. Adv. Funct. Mater., 2008, 18 : 2780-2788
[33] Sun X M, Li Y D. Angew. Chem. Int. Ed., 2004, 43 : 3827-3831
[34] Titirici M M, Antonietti M, Thomas A. Chem. Mater., 2006, 18 : 3808-3812
[35] Wang J, Loh K P, Zhong Y L, Lin M, Ding J, Foo Y L. Chem. Mater., 2007, 19 : 2566-2572
[36] Nakashima T, Kimizuka N. J. Am. Chem. Soc., 2003, 125 : 6386-6387
[37] Sun Y G, Xia Y N. Science, 2002, 298 : 2176-2179
[38] Zhao X F, Li T K, Xi Y Y, Ng D H L, Yu J. G. Crys. Growth & Design, 2006, 6 : 2210-2213
[39] Xu H L, Wang W Z. Angew. Chem. Int. Ed., 2007, 46 : 1489-1492
[40] Yin Y D, Rioux R M, Erdonmez C K, Hughes S, Somorjai G A, Alivisatos A P. Science, 2004, 304 : 711-714
[41] Liu B, Zeng H C. J. Am. Chem. Soc., 2004, 126 : 16744-16746
[42] Liu B, Zeng H C. J. Am. Chem. Soc., 2004, 126 : 8124-8125
[43] Li J, Zeng H C. Angew. Chem. Int. Ed., 2005, 44 : 4342-4345
[44] Kistler S S. Nature, 1931, 127 : 741-742
[45] Hüsing N, Schubert U. Angew. Chem. Int. Ed., 1998, 37 : 22-45
[46] Yang H, Choi S, Hyun S, Park C. Thin Solid Films, 1999, 348 : 69-73
[47] Pierre A, Begag R, Pajonk G J. Mater. Sci., 1999, 34 : 4937-4944
[48] Hair L M, Coronado P R, Reynolds J G. J. Non-Cryst. Solids, 2000, 270 : 115-122
[49] Muller C A, Schneider M, Mallat T, Baiker A. J. Catal., 2000, 189 : 221-232
[50] Ayers M R, Song X Y, Hunt A J. J. Mater. Sci., 1996, 31 : 6251-6257
[51] Su Y, Yan X H, Wang A H, Fei J B, Cui Y, He Q, Li J B. J. Mater. Chem., 2010, 20 : 6734-6740
[52] Fei J B, Cui Y, Yan X H, Yang Y, Su Y, Li J B. J. Mater. Chem., 2009, 19 : 3263-3267
[53] Sun S D, Kong C C, Deng D C, Song X P, Ding B J, Yang Z M. CrystEngComm., 2011, 13 : 63-66
[54] Wang C X, Yin L W, Zhang L Y, Qi Y X, Lun N, Liu N N. Langmuir, 2010, 26 : 12841-12848
[55] Zhang Y, Xu J Q, Xiang Q, Li H, Pan Q Y, Xu P C. J. Phys. Chem. C, 2009, 113 : 3430-3435
[56] Zhu P L, Zhang J W, Wu Z S, Zhang Z. J. Cryst. Growth Des., 2008, 8 : 3148-3153
[57] Feng L, Zhang Y N, Li M Z, Zheng Y M, Shen W Z, Jiang L. Langmuir, 2010, 26 : 14885-14888
[58] Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L. J. Adv. Mater., 2006, 18 : 2426-2431
[59] Ullah M H, Chung W S, Kim I, Ha C S. Small, 2006, 2 : 870-873
[60] Bao N Z, Shen L M, Takata, T., Domen, K. Chem. Mater., 2008, 20 : 110-117
[61] Chen S H, Fan Z Y, Carroll D L. J. Phys. Chem. B, 2002, 106 : 10777-10781
[62] Jana N R, Gearheart L, Murphy C J. Adv. Mater., 2001, 13 : 1389-1393
[63] Wen X G, Xie Y T, Mak W C, Cheung K Y, Li X Y, Renneberg R, Yang S. Langmuir, 2006, 22 : 4836-4842
[64] Zeng S Y, Tang K B, Li T W, Liang Z H, Wang D, Wang Y K, Qi Y X, Zhou W W. J. Phys. Chem. C, 2008, 112 : 4836-4843
[65] Corma A, Atienzar P, Garcia H, Chane-Ching J Y. Nat. Mater., 2004, 3 : 394-397
[66] Li H B, Chai L L, Wang X Q, Wu X Y, Xi G C, Liu Y K, Qian Y T. Cryst. Growth Des., 2007, 7 : 1918-1922
[67] Zheng Y H, Cheng Y, Wang Y S, Zhou L H, Bao F, Jia C. J. Phys. Chem. B, 2006, 110 : 8284-8288
[68] Park S, Lim J H, Chung S W, Mirkin C A. Science, 2004, 303 : 348-351
[69] Storhoff J J, Mirkin C A. Chem. Rev., 1999, 99 : 1849-1862
[70] Yang J, Li C, Quan Z, Zhang C, Yang P, Li Y, Yu C, Lin J. J. Phys. Chem. C, 2008, 112 : 12777-12785
[71] Zhang Y J, Zhang Y, Wang Z H, Li D, Cui T Y, Liu W, Zhang Z D. Eur. J. Inorg. Chem., 2008, 2733-2738
[72] Shang X, Lu W, Yue B, Zhang L, Ni J, Lv Y, Feng Y. Cryst. Growth Des., 2009, 9 : 1415-1420
[73] Yang H, Wu X L, Cao M H, Guo Y G. J. Phys. Chem. C, 2009, 113 : 3345-3351
[74] Gu Z J, Zhai T Y, Gao B F, Zhang G J, Ke D M, Ma Y, Yao J N. Cryst. Growth Des., 2007, 7 : 825-830
[75] Gorai S, Ganguli D, Chaudhuri S. Cryst. Growth Des., 2005, 5 : 875-877
[76] Gou X L, Cheng F Y, Shi Y H, Zhang L, Peng, S J, Chen J, Shen P W. J. Am. Chem. Soc., 2006, 128 : 7222 -7229
[77] Martin C R. Science, 1994, 266 : 1961-1966
[78] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359 : 710-712
[79] Caruso F, Caruso R, Mohwald H. Science, 1998, 282 : 1111-1114
[80] Zhang G J, Shen Z R, Liu M, Guo C H, Sun P C, Yuan Z Y, Li B H, Ding D T, Chen T H. J. Phys. Chem. B, 2006, 110 : 25782-25790
[81] Zhu J, Zhang T S, Ma J, Tay B Y. J. Mater. Res., 2007, 22 : 2448-2453
[82] Guerret C, Bouar Y, Lolseau L. Nature, 1994, 372 : 761-765
[83] Ajcyan P M, Stephan O, Redlich P H. Nature, 1995, 375 : 564-567
[84] Yuan R S, Fu X Z, Wang X C, Liu P, Wu L, Xu Y M, Wang X X, Wang Z Y. Chem. Mater., 2006, 18 : 4700-4705
[85] Smatt J H, Weidenthaler C, Rosenholm J B, Linden M. Chem. Mater., 2006, 18 : 1443-1450
[86] Tan B, Rankin S E. Langmuir, 2005, 21 : 8180-8187
[87] Wolosiuk A, Armagan O, Braun P V. J. Am. Chem. Soc., 2005, 127 : 16356-16357
[88] Chang Y, Teo J J, Zeng H C. Langmuir, 2005, 21 : 1074-1079
[89] Colfen H, Mann S. Angew. Chem., Int. Ed., 2003, 42 : 2350-2365
[90] Naka K, Tanaka Y, Chujo Y. Langmuir, 2002, 18 : 3655-3658
[91] Hiral T, Hariguchi S, Komasawa I. Langmuir, 1997, 13 : 6650-6653
[92] Polshettiwar V, Varma R S. Chem. Soc. Rev., 2008, 37 : 1546-1557
[93] Polshettiwar V, Varma R S. Acc. Chem. Res., 2008, 41 : 629-639
[94] Polshettiwar V, Varma R S. Curr. Opin. Drug Discovery Dev., 2007, 10 : 723-737
[95] Polshettiwar V, Varma R S. J. Org. Chem., 2008, 73 : 7417-7419
[96] Polshettiwar V, Varma R S. J. Org. Chem., 2007, 72 : 7420-7422
[97] Gerbec J A, Magana D, Washington A, Strouse G F. J. Am. Chem. Soc., 2005, 127 : 15791-15800
[98] Sommer W J, Weck M. Langmuir, 2007, 23 : 11991-11995
[99] Gao F, Lu Q Y, Komarneni S. Chem. Mater., 2005, 17 : 856-860
[100] Hu X L, Yu J C, Gong J M. J. Phys. Chem. C, 2007, 111 : 11180-11185
[101] Polshettiwar V, Nadagouda M N, Varma R S. Chem. Commun., 2008, 6318-6320
[102] Polshettiwar V, Nadagouda M N, Varma R S. J. Mat. Chem., 2009, 19 : 2026-2031
[103] Polshettiwar V, Varma R S. Chem. Eur. J., 2009, 15 : 1582-1586
[104] Polshettiwar V, Varma R S. Org. Bio. Chem., 2009, 7 : 37-40
[105] Polshettiwar V, Baruwati B, Varma R S. Green. Chem., 2009, 11 : 127-131
[106] Baruwati B, Nadagouda M N, Varma R S. J. Phys. Chem. C, 2008, 112 : 18399-18404
[107] Polshettiwar V, Baruwati B, Varma R S. ACS Nano, 2009, 3 : 728-736
[108] Dallinger D, Kappe C O. Chem. Rev., 2007, 107 : 2563-2591
[109] Fossard F, Helman A, Julien F H. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17 : 82-83

[1] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[2] Xing Ding, Xianglong Yang, Zhongliang Xiong, Hao Chen, Lizhi Zhang. Environment Pollutants Removal with Bi-Based Photocatalysts [J]. Progress in Chemistry, 2017, 29(9): 1115-1126.
[3] Yufu Chen, Xianggao Li, Yin Xiao, Shirong Wang. Solution Processed Large-Scale Small Molecular Organic Field-Effect Transistors [J]. Progress in Chemistry, 2017, 29(4): 359-372.
[4] Gaobo Lin, Ting Luo, Lvbing Yuan, Wenjie Liang*, Hai Xu*. High Performance n-Type and Ambipolar Small Organic Semiconductors for Organic Field-Effect Transistors [J]. Progress in Chemistry, 2017, 29(11): 1316-1330.
[5] Qi Yuehong, Liu Li, Liang Yinghua, Hu Jinshan, Cui Wenquan. Graphitic Carbon Nitride Compound Photocatalyst [J]. Progress in Chemistry, 2015, 27(1): 38-46.
[6] Zhu Weigang, Zhen Yonggang, Dong Huanli, Fu Hongbing, Hu Wenping. Organic Cocrystal Optoelectronic Materials and Devices [J]. Progress in Chemistry, 2014, 26(08): 1292-1306.
[7] Zhou Wenli, Xie Qingji, Lian Shixun. Photoelectrode Materials for Solar Water Splitting [J]. Progress in Chemistry, 2013, 25(12): 1989-1998.
[8] Geng Xuewen, He Chunlin, Xu Shichong, Li Jungang, Zhu Lijuan, Zhao Liancheng. Silver-Assisted Chemical Etching of Semiconductor Materials [J]. Progress in Chemistry, 2012, (10): 1955-1965.
[9] Xiao Xin, Zhang Weide. Photocatalysis of Carbon Nanotubes/Semiconductor Composites [J]. Progress in Chemistry, 2011, 23(4): 657-668.
[10] Meng Xiangdong Liu Xin Zhao Jiupeng Xin Wuhong Li Yao. Semiconductor Electrodeposition from Ionic Liquids [J]. Progress in Chemistry, 2010, 22(0203): 277-283.
[11] Liu Jie Jiang Lang Hu Wenping. The Application of Anthracene and Its Derivatives in Organic Field-Effect Transistors [J]. Progress in Chemistry, 2009, 21(12): 2568-2577.
[12] Peng Fang1|Zhu Derong2|Si Shihui1**|Xiao Hui1. Photoelectrochemical Semiconductor Biosensors [J]. Progress in Chemistry, 2008, 20(04): 586-593.
[13] Li Dunfang,Zheng Jing,Chen Xinyi,Zou Zhigang**. Evaluation Systems and Materials for Photocatalytic Water Splitting [J]. Progress in Chemistry, 2007, 19(04): 464-477.
[14] Fantai Kong,Songyuan Dai**. Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2006, 18(11): 1409-1424.
[15] Yaling Liu,Hongxiang Li,Wenping Hu*,Daoben Zhu* . Organic Single-Crystal Field-Effect Transistors [J]. Progress in Chemistry, 2006, 18(0203): 189-199.