中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Inorganic Nickel-Based Nanocomposites

Lin Lijuan, Zhou Wei, Guo Lin   

  1. School of Chemistry and Environment, Beihang University, Beijing 100191, China
  • Received: Revised: Online: Published:
  • Contact: Zhou Wei E-mail:zhouwei@buaa.edu.cn
PDF ( 1097 ) Cited
Export

EndNote

Ris

BibTeX

Nanocomposites have become hot issues in the field of nanomaterials due to their unique physical and chemical properties. As an important transitional metal nanomaterial, nickel material has been widely used in magnetics, electrochemistry, catalytic chemistry and other fields. The composites of nickel and other metals or oxides with improved inherent properties would show novel properties by the synergy of composition and nanostructure. Therefore, it is of scientific significance to study the nickel-based nanocomposites. Because of the differences of the combining positions and methods for different components in various nanostructures, the progress of nickel-based nanocomposites is reviewed according to three main structures, which are core-shell structure, supported structure, and multisegment nanowires. Based on the introduction to the various synthetic methods and structures, we summarize the advantages and disadvantages of these methods and composite structures, as well as probable applications. It will be helpful for preparing other similar nanocomposites.

Contents
1 Introduction
2 Core-shell structure nanocomposites
2.1 Core-shell nanostructure
2.2 Coaxial nanocables
3 Supported nickel-nanocomposites
3.1 Nickel-carbon nanocomposites
3.2 Nickel-semiconductor nanocomposites
4 Multisegment nanowires
5 Conclusions

CLC Number: 

[1] Sounart T L, Liu J, Voigt J A, Hsu J W P, Spoerke E D, Tian Z, Jiang Y. Adv. Funct. Mater., 2006, 16 : 335-344
[2] Cozzoli P D, Pellegrino T, Manna L. Chem. Soc. Rev., 2006, 35 : 1195-1208
[3] Costi R, Saunders A E, Banin U. Angew. Chem. Int. Ed., 2010, 49 : 4878-4897
[4] Navarro Yerga R M, Alvarez Galván M C, del Valle F, de la Mano J A V, Fierro J L G. ChemSusChem, 2009, 2 : 471-485
[5] Selvan S T, Patra P K, Ang C Y, Ying J Y. Angew. Chem. Int. Ed., 2007, 46 : 2448-2452
[6] Costi R, Saunders A E, Elmalem E, Salant A, Banin U. Nano Lett., 2008, 8 : 637-641
[7] Gao J, Liang G, Cheung J S, Pan Y, Kuang Y, Zhao F, Zhang B, Zhang X, Wu E X, Xu B. J. Am. Chem. Soc., 2008, 130 : 11828-11833
[8] Yu H, Chen M, Rice P M, Wang S X, White R L, Sun S. Nano Lett., 2005, 5 : 379-382
[9] Kim H, Achermann M, Balet L P, Hollingsworth J A, Klimov V I. J. Am. Chem. Soc., 2005, 127 : 544-546
[10] Gu H, Zheng R, Zhang X, Xu B. J. Am. Chem. Soc., 2004, 126 : 5664-5665
[11] Buonsanti R, Grillo V, Carlino E, Giannini C, Curri M L, Innocenti C, Sangregorio C, Achterhold K, Parak F G, Agostiano A, Cozzoil P D. J. Am. Chem. Soc., 2006, 128 : 16953-16970
[12] Mokari T, Rothenberg E, Popov I, Costi R, Banin U. Science, 2004, 304 : 1787-1790
[13] Shi W, Zeng H, Sahoo Y, Ohulchanskyy T Y, Ding Y, Wang Z L, Swihart M, Prasad P N. Nano Lett., 2006, 6 : 875-881
[14] Juárez B H, Klinke C, Kornowski A, Weller H. Nano Lett., 2007, 7 : 3564-3568
[15] Yang J, Elim H I, Zhang Q, Lee J Y, Ji W. J. Am. Chem. Soc., 2006, 128 : 11921-11926
[16] Sun Z, Yang Z, Zhou J, Yeung M H, Ni W, Wu H, Wan J. Angew. Chem. Int. Ed., 2009, 48 : 2881-2885
[17] Robinson R D, Sadtler B, Demchenko D O, Erdonmez C K, Wang L W, Alivisatos A P. Science, 2007, 317 : 355-358
[18] Yang J, Duan G, Cai W. J. Phys. Chem. C, 2009, 113 : 3973-3977
[19] Metin O, Mazumder V, Saim O, Sun S. J. Am. Chem. Soc., 2010, 132 : 1468-1469
[20] Tai Y L, Teng H. Chem. Mater., 2004, 16 : 338-342
[21] Respaud M, Amiens C, Chaudret B, Cordente N, Senocq F, Casanove M J. Nano Lett., 2001, 1 : 565-568
[22] Liu C M, Guo L, Wang R M, Deng Y, Xu H B, Yang S. Chem. Commun., 2004, 2726-2727
[23] Liu Z, Li S, Yang Y, Peng S, Hu Z, Qian Y. Adv. Mater., 2003, 15 : 1946-1948
[24] Liu Q, Liu H, Han M, Zhu J, Liang Y, Xu Z, Song Y. Adv. Mater., 2005, 17 : 1995-1999
[25] Ni X, Zhao Q, Zhang D, Zhang X, Zheng H. J. Phys. Chem. C, 2007, 111 : 601-605
[26] Leng Y, Li Y, Li X, Takahashi S. J. Phys. Chem. C, 2007, 111 : 6630-6633
[27] Zhang X, Tu K N, Xie Y H, Tung C H, Xu S. Adv. Mater., 2006, 18 : 1905-1909
[28] Chen Y, Yang F, Dai Y, Wang W, Chen S. J. Phys. Chem. C, 2008, 112 : 1645-1649
[29] Lee I S, Lee N, Park J, Kim B H, Yi Y W, Kim T, Kim T K, Lee I H, Paik S R, Hyeon T. J. Am. Chem. Soc., 2006, 128 : 10658-10659
[30] Ji L, Lin Z, Medford A J, Zhang X. Chem. Eur. J., 2009, 15 : 10718-10722
[31] Bu W, Hua Z, Chen H, Shi J. J. Phys. Chem. B, 2005, 109 : 14461-14464
[32] Wang Z, Lu Q, Kong M, Zhang L. Chem. Eur. J., 2007, 13 : 1463-1470
[33] Zhang D, Liu Z, Han S, Li C, Lei B, Stewart M P, Tour J M, Zhou C. Nano Lett., 2004, 4 : 2151-2155
[34] Zhang H, Ding J, Chow G M, Ran M, Yi J B. Chem. Mater., 2009, 21 : 5222-5228
[35] Song H, Park J C, Bang J U, Lee J, Ko C H. J. Mater. Chem., 2010, 20 : 1239-1246
[36] Park J C, Lee H J, Kim J Y, Park K H, Song H. J. Phys. Chem. C, 2010, 114 : 6381-6388
[37] Son S U, Jang Y, Park J, Na H B, Park H M, Yun H J, Lee J, Hyeon T. J. Am. Chem. Soc., 2004, 126 : 5026-5027
[38] Carroll K J, Calvin S, Ekiert T F, Unruh K M, Carpenter E E. Chem. Mater., 2010, 22 : 2175-2177
[39] Yamauchi T, Tsukahara Y, Sakata T, Mori H, Yanagida T, Kawai T, Wada Y. Nanoscale, 2010, 2 : 515-523
[40] Fu W, Yang H, Chang L, Li M, Bala H, Zou G, Yu Q. Colloids Surf. A, 2005, 262 : 71-75
[41] Xu J, Yang H, Fu W, Fan W, Zhu Q, Li M, Zou G. J. Alloys Compd., 2008, 458 : 119-122
[42] Lee J Y, Hong S H. J. Mater. Res., 2004, 19 : 1669-1675
[43] Lee J Y, Lee J H, Hong S H, Lee Y K, Choi J Y. Adv. Mater., 2003, 15 : 1655-1658
[44] Li L, Reiss P, Protiere M. Small, 2009, 5 : 154-168
[45] Fan F R, Liu D Y, Wu Y F, Duan S, Xie Z X, Jiang Z Y, Tian Z Q. J. Am. Chem. Soc., 2008, 130 : 6949-6951
[46] Lim B, Kobayashi H, Yu T, Wang J, Kim M J, Li Z Y, Rycenga M, Xia Y. J. Am. Chem. Soc., 2010, 132 : 2506-2507
[47] Carbone L, Nobile C, Giorgi M D, Sala F D, Morello G, Pompa P, Hytch M, Snoeck E, Fiore A, Franchini I R, Nadasan M, Silvestre A F, Chiodo L, Kudera S, Cingolani R, Krahne R, Manna L. Nano Lett., 2007, 7 : 2942-2950
[48] Liu H, Owen J S, Alivisatos A P. J. Am. Chem. Soc., 2007, 129 : 305-312
[49] Grzelczak M, Rodríguez-González B, Pérez-Juste J, Liz-Marzán L M. Adv. Mater., 2007, 19 : 2262-2266
[50] Ahmed W, Laarman R P B, Hellenthal C, Kooij E S, Van Silfhout A, Poelsema B. Chem. Commun., 2010, 6711-6713
[51] Yamauchi T, Tsukahara Y, Yamada K, Sakata T, Wada Y. Chem. Mater., 2011, 23 : 75-84
[52] Railsback J G, Johnston-Peck A C, Wang J, Tracy J B. ACS Nano, 2010, 4 : 1913-1920
[53] Zafiropoulou I, Papagelis K, Boukos N, Siokou A, Niarchos D, Tzitzios V. J. Phys. Chem. C, 2010, 114 : 7582-7585
[54] Henkes A E, Vasquez Y, Schaak R E. J. Am. Chem. Soc., 2007, 129 : 1896-1897
[55] Wang J, Johnston-Peck A C, Tracy J B. Chem. Mater., 2009, 21 : 4462-4467
[56] Chiang R K, Chiang R T. Inorg. Chem., 2007, 46 : 369-371
[57] Zhou W, Chen W, Nai J, Yin P, Chen C, Guo L. Adv. Funct. Mater., 2010, 20 : 3678-3683
[58] Lu X, Tuan H Y, Chen Y, Li Z Y, Korgel B A, Xia Y. J. Am. Chem. Soc., 2007, 129 : 1733-1742
[59] Sun Y, Xia Y. Adv. Mater., 2004, 16 : 264-268
[60] Skrabalak S E, Au L, Li X, Xia Y. Nat. Protoc., 2007, 2 : 2182-2190
[61] Sun Y, Xia Y. Science, 2002, 298 : 2176-2179
[62] Sun Y, Mayers B, Xia Y. Adv. Mater., 2003, 15 : 641-646
[63] Chen J, Wiley B, Mclellan J, Xiong Y, Li Z Y, Xia Y. Nano Lett., 2005, 5 : 2058-2062
[64] Cobley C M, Campbell D J, Xia Y. Adv. Mater., 2008, 20 : 748-752
[65] Chen J, Mclellan J M, Siekkinen A, Xiong Y, Li Z Y, Xia Y. J. Am. Chem. Soc., 2006, 128 : 14776-14777
[66] Chen D, Li J, Shi C, Du X, Zhao N, Sheng J, Liu S. Chem. Mater., 2007, 19 : 3399-3405
[67] Chen D, Liu S, Li J, Zhao N, Shi C, Du X, Sheng J. J. Alloys Compd., 2009, 475 : 494-500
[68] Bala T, Bhame S D, Joy P A, Prasad B L V, Sastry M. J. Mater. Chem., 2004, 14 : 2941-2945
[69] Sarkar S, Sinha A K, Pradhan M, Basu M, Negishi Y, Pal T. J. Phys. Chem. C, 2011, 115 : 1659-1673
[70] Zhou W, Zheng K, He L, Wang R, Guo L, Chen C, Han X, Zhang Z. Nano Lett., 2008, 8 : 1147-1152
[71] Zheng X, Yuan S, Tian Z, Yin S, He J, Liu K, Liu L. Chem. Mater., 2009, 21 : 4839-4845
[72] Johnston-Peck A C, Wang J, Tracy J B. ACS Nano, 2009, 3 : 1077-1084
[73] Du N, Zhang H, Chen B, Wu J, Yang D. Nanotechnology, 2007, 18 : 115619-115624
[74] Jang J, Bae J, Choi M, Yoon S H. Carbon, 2005, 43 : 2730-2736
[75] Carny O, Shalev D E, Gazit E. Nano Lett., 2006, 6 : 1594-1597
[76] Zhu W, Wang G, Hong X, Shen X. J. Phys. Chem. C, 2009, 113 : 5450-5454
[77] Takahashi K, Wang Y, Cao G. J. Phys. Chem. B, 2005, 109 : 48-51
[78] Bao J, Xu D, Zhou Q, Xu Z. Chem. Mater., 2002, 14 : 4709-4713
[79] Lonjon A, Laffont L, Demont P, Dantras E, Lacabanne C. J. Phys. Chem. C, 2009, 113 : 12002-12006
[80] Wang Q, Wang G, Han X, Wang X, Hou J G. J. Phys. Chem. B, 2005, 109 : 23326-23329
[81] Narayanan T N, Shaijumon M M, Ajayan P M, Anantharaman M R. Nanoscale Res. Lett., 2010, 5 : 164-168
[82] Li X, Wang Y, Song G, Peng Z, Yu Y, She X, Sun J, Li J, Li P, Wang Z, Duan X. J. Phys. Chem. C, 2010, 114 : 6914-6916
[83] Sun Y, Gates B, Mayers B, Xia Y. Nano Lett., 2002, 2 : 165-168
[84] Sun Y, Mayers B, Herricks T, Xia Y. Nano Lett., 2003, 3 : 955-960
[85] Mckiernan M, Zeng J, Ferdous S, Verhaverbeke S, Leschkies K S, Gouk R, Lazik C, Jin M, Briseno A L, Xia Y. Small, 2010, 6 : 1927-1934
[86] Zhang S, Zeng H C. Chem. Mater., 2010, 22 : 1282-1284
[87] Yoon B, Wai C M. J. Am. Chem. Soc., 2005, 127 : 17174-17175
[88] Cao L, Scheiba F, Roth C, Schweiger F, Cremers C, Stimming U, Fuess H, Chen L, Zhu W, Qiu X. Angew. Chem., 2006, 118 : 5441-5445
[89] Liao S, Holmes K A, Tsaprailis H, Birss V I. J. Am. Chem. Soc., 2006, 128 : 3504-3505
[90] Pham-Huu C, Keller N, Roddatis V V, Mestl G, Schlogl R, Ledoux M J. Phys. Chem. Chem. Phys., 2002, 4 : 514-521
[91] Azadi P, Farnood R, Meier E. J. Phys. Chem. A, 2010, 114 : 3962-3968
[92] Kim H S, Lee H, Han K S, Kim J H, Song M S, Park M S, Lee J Y, Kang J K. J. Phys. Chem. B, 2005, 109 : 8983-8986
[93] Cheng F, Chen J, Gou X. Adv. Mater., 2006, 18 : 2561-2564
[94] Wang L, Liu X, Yang M, Fan Y, Zhan J. Eur. J. Inorg. Chem., 2009, 2009: 897-902
[95] Kim J, Lee J E, Lee J, Yu J H, Kim B C, An K, Hwang Y, Park J G, Shin C H, Kim J, Hyeon T. J. Am. Chem. Soc., 2006, 128 : 688-689
[96] Kwon K W, Shim M. J. Am. Chem. Soc., 2005, 127 : 10269-10275
[97] Selvan S T, Patra P K, Ang C Y, Ying J Y. Angew. Chem. Int. Ed., 2007, 46 : 2448-2452
[98] Liu F, Lee J Y, Zhou W J. Small, 2006, 2 : 121-128
[99] Gudiksen M S, Lauhon L J, Wang J, Smith D C, Lieber C M. Nature, 2002, 415 : 617-620
[100] Salem A K, Searson P C, Leong K W. Nat. Mater., 2003, 2 : 668-671
[101] Demchenko D O, Robinson R D, Sadtler B, Erdonmez C K, Alivisatos A P, Wang L W. ACS Nano, 2008, 2 : 627-636
[102] Menagen G, Mocatta D, Salant A, Popov I, Dorfs D, Banin U. Chem. Mater., 2008, 20 : 6900-6902
[103] Son D H, Hughes S M, Yin Y, Alivisatos A P. Science, 2004, 306 : 1009-1011
[104] Nicewarner-Pea S R, Walton I D, Freeman R G, Reiss B D, He L, Pea D J, Cromer R, Keating C D, Natan M J. Science, 2001, 294 : 137-141
[105] Liang H P, Guo Y G, Hu J S, Zhu C F, Wan L J, Bai C L. Inorg. Chem., 2005, 44 : 3013-3015
[106] Guo Y G, Wan L J, Zhu C F, Yang D L, Chen D M, Bai C L. Chem. Mater., 2003, 15 : 664-667
[107] Chen M, Searson P C. J. Appl. Phys., 2003, 93 : 8253-8255

[1] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[2] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[3] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[4] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[5] Wanqiu Huang, Miaomiao Gao, Hongjing Dou. Polypyrrole and Its Nanocomposites Applied in Photothermal Therapy [J]. Progress in Chemistry, 2020, 32(4): 371-380.
[6] Shaofei Zhao, Peng Liu, Gao Cheng, Lin Yu, Huaqiang Zeng. Preparation and Pseudocapacitor Properties of Self-Supported Nickel Sulfides Electrode Materials [J]. Progress in Chemistry, 2020, 32(10): 1582-1591.
[7] Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li. Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application [J]. Progress in Chemistry, 2019, 31(9): 1213-1220.
[8] Shaoming Qiao, Naibao Huang, Zhengyuan Gao, Shixian Zhou, Yin Sun. Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2019, 31(8): 1177-1186.
[9] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[10] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[11] Jie Guan, Lingna Sun, Qin Xu*, Xiaoya Hu*. Synthesis and Application of Molecularly Imprinted Polymers Based on Titanium Dioxide and Its Composites [J]. Progress in Chemistry, 2018, 30(11): 1749-1760.
[12] Yongyin Kang, Zhicheng Song, Peisheng Qiao, Xiangpeng Du, Fei Zhao. Research and Application of Photo-Luminescent Colloidal Quantum Dots [J]. Progress in Chemistry, 2017, 29(5): 467-475.
[13] Jing Ru, Biyao Geng, Congcong Tong, Haiying Wang, Shengchun Wu, Hongzhi Liu. Nanocellulose-Based Adsorption Materials [J]. Progress in Chemistry, 2017, 29(10): 1228-1251.
[14] Gao Dangge, Liang Zhiyang, Lyu Bin, Ma Jianzhong. Organic/Inorganic Nanocomposites Prepared by Miniemulsion Polymerization [J]. Progress in Chemistry, 2016, 28(7): 1076-1083.
[15] Ming Weina, Wang Xiaoyan, Ming Yongfei, Li Jinhua, Chen Lingxin. Preparation and Applications of Core-Shell Molecularly Imprinted Polymers [J]. Progress in Chemistry, 2016, 28(4): 552-563.
Viewed
Full text


Abstract

Inorganic Nickel-Based Nanocomposites