中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Capture of CO2 by Ionic Liquids

Zhou Lingyun1,2, Fan Jing1, Wang Jianji1   

  1. 1. School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, China;
    2. College of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
  • Received: Revised: Online: Published:
  • Contact: Wang Jianji E-mail:jwang@henannu.edu.cn
PDF ( 1250 ) Cited
Export

EndNote

Ris

BibTeX

Since CO2 is one of the most important greenhouse gases, the research and development in the carbon capture have long been the focus of many academic and industrial studies. Ionic liquids have a number of unique properties, such as no-volatility, non-flammation, recyclability, high thermal stability, strong solubility capacity, and the tunability of molecular structures and physicochemical properties. Thus they have promising application in absorption and separation of CO2. In this paper, the recent progress in the CO2 capture by using regular ionic liquids, task-specific ionic liquids, supported ionic-liquids membranes, polymerized ionic liquids and the mixtures of ionic liquids with some molecular solvents have been reviewed. The effects of cationic structure, anionic property, alkyl chain length, functionalization of both the cations and the anions, characteristics of the supported membranes, the polymerized degree of ionic liquids, temperature and pressure of the systems on the selective capture of CO2 are discussed in detail. The possible mechanisms for the capture and selective separation of CO2 are also demonstrated. Furthermore, the advantages and disadvantages have been analyzed for the above mentioned ionic liquids systems in the capture of CO2. The future development in this area is prospected, and several important issues are suggested for the further work.

Contents
1 Introduction
2 CO2 capture by ionic liquids
2.1 Regular ionic liquids
2.2 Task-specific ionic liquids
2.3 Supported ionic liquid membranes
2.4 Polymerized ionic liquids
2.5 Mixtures of ionic liquids with molecular solvents
3 Conclusions and outlook

CLC Number: 

[1] Srivastava M L, Shukla N K, Sungh S K, Jaiswal M R. J. Membr. Sci., 1996, 117 : 39-44
[2] Moreno C, Valiente M. J. Membr. Sci., 1999, 155 : 155-162
[3] Jamal A, Meisen A, Lim C J. Chem. Eng. Sci., 2006, 61 : 6590-6603
[4] Oyenekan B A, Rochelle G T. Ind. Eng. Chem. Res., 2006, 45 : 2457-2466
[5] Henni A, Li J, Tontiwachwuthikul P. Ind. Eng. Chem. Res., 2008, 47 : 2213-2220
[6] Rogers R D. Nature, 2007, 447 : 917-918
[7] Bara J E, Carlisle T K, Gabriel C J, Camper D, Finotello A, Gin D L, Noble R D. Ind. Eng. Chem. Res., 2009, 48 : 2739-2751
[8] Hasib-ur-Rahman M, Siaj M, Larachi F. Chemical Engineering and Processing, 2010, 49 : 313-322
[9] Karadas F, Atilhan M, Aparicio S. Energy Fuels, 2010, 24 : 5817-5828
[10] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Nature, 1999, 399 : 28-29
[11] Blanchard L A, Gu Z Y, Brennecke J F. J. Phys. Chem. B, 2001, 105 : 2437-2444
[12] Yuan X L, Zhang S J, Liu J, Lu X M. Fluid Phase Equilib., 2007, 257 : 195-200
[13] Anthony J L, Anderson J L, Maginn E J, Brennecke J F. J. Phys. Chem. B, 2005, 109 : 6366-6374
[14] Hong G, Jacquemin J, Deetlefs M, Hardacre C, Husson P, Gomes M FC. Fluid Phase Equilib., 2007, 257 : 27-34
[15] Kumelan J, Tuma D, Kamps AP S, Maurer G J. Chem. Eng. Data, 2010, 55 : 165-172
[16] Anthony J L, Maginn E J, Brennecke J F. J. Phys. Chem. B, 2002, 106 : 7315-7320
[17] Anderson J L, Dixon J K, Brennecke J F. Acc. Chem. Res., 2007, 40 : 1208-1216
[18] Baltus R E, Culbertson B H, Dai S, Luo H, DePaoli D W. J. Phys. Chem. B, 2004, 108 : 721-727
[19] Chen Y H, Zhang S J, Yuan X L, Zhang Y Q, Zhang X P, Dai W B, Mori R. Thermochimica Acta, 2006, 441 : 42-44
[20] Muldoon M J, Aki S N V K, Anderson J L, Dixon J K, Brennecke J F. J. Phys. Chem. B, 2007, 111 : 9001-9009
[21] Cadena C, Anthony J L, Shah J K, Morrow T I. J. Am. Chem. Soc., 2004, 126 : 5300-5308
[22] Aki S N V K, Mellein B R, Saurer E M, Brennecke J F. J. Phys. Chem. B, 2004, 108 : 20355-20365
[23] Scilderman A M, Raeissi S, Peters C J. Fluid Phase Equilib., 2007, 260 : 19-22
[24] Zhang X C, Liu Z P, Wang W C. AIChE J., 2008, 54 : 2717-2728
[25] Jalili A H, Mehdizadeh A, Shokouhi M, Sakhaeinia H, Taghikhani V. J. Chem. Thermodynamics, 2010, 42 : 787-791
[26] Shin E K, Lee B C. J. Chem. Eng. Data, 2008, 53 : 2728-2734
[27] Palgunadi J, Kang J E, Nguyen D Q, Kim J H, Min B K, Lee S D, Kim H, Kim H S. Thermochim. Acta, 2009, 494 : 94-98
[28] Shin E K, Lee B C, Limb J S. J. Supercrit. Fluids, 2008, 45 : 282-292
[29] Wolsky A M, Daniels E J, Jody B. J. Environ. Prog., 1994, 13 : 214-219
[30] Bates E D, Mayton R D, Ntai L, Davis J H. J. Am. Chem. Soc., 2002, 124 : 926-927
[31] Crooks J E, Donnellan J P. J. Chem. Soc. Perkin Trans. Ⅱ, 1989, 331-333
[32] Zhang J M, Zhang S J, Dong K, Zhang Y Q, Shen Y Q, Lu X M. Chem. Eur. J., 2006, 12 : 4021-4026
[33] Zhang Y Q, Zhang S J, Lu X M, Zhou Q, Fan W, Zhang X P. Chem. Eur. J., 2009, 15 : 3003-3011
[34] Gurkan B E, de la Fuente J C, Mindrup E M, Ficke L E, Goodrich B F, Price E A, Schneider W F, Brennecke J F. J. Am. Chem. Soc., 2010, 132 : 2116-2117
[35] Soutullo M D, Odom C I, Wicker B F, Henderson C N, Stenson A C, Davis J H. Chem. Mater., 2007, 19 : 3581-3583
[36] Yu G R, Zhang S J. Fluid Phase Equilibria, 2007, 255 : 86-92
[37] Scovazzo P, Kieft J, Finan D A, Koval C, DuBois D, Noble R. J. Membr. Sci., 2004, 238 : 57-63
[38] Baltus R E, Counce R M, Culbertson B H, Luo H, DePaoli D W, Dai S, Duckworth D C. Sep. Sci. Technol., 2005, 40 : 525-541
[39] Park Y I, Kim B S, Byun Y H, Lee S H, Lee E W, Lee J M. Desalination, 2009, 236 : 342-348
[40] Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kubota F, Goto M. J. Membr. Sci., 2008, 314 : 1-4
[41] Myers C, Pennline H, Luebke D, Ilconich J, Dixon J K, Maginn E J, Brennecke J F. J. Membr. Sci., 2008, 322 : 28-31
[42] Bara J E, Gabriel C J, Carlisle T K, Camper D, Finotello A, Gin D L, Noble R D. Chem. Eng. J., 2009, 147 : 43-50
[43] Ilconich J, Myers C, Pennline H, Luebke D. J. Membr. Sci., 2007, 298 : 41-47
[44] Iarikova D D, Hacarlioglua P, Oyama S T. Chem. Eng. J., 2011, 166 : 401-406
[45] Tang J B, Tang H D, Sun W L, Plancher H, Radosz M, Shen Y Q. Chem. Commun., 2005, 3325-3327
[46] Tang J B, Sun W L, Tang H D, Radosz M, Shen Y Q. Macromolecules, 2005, 38 : 2037-2039
[47] Bara J E, Lessmann S, Gabriel C J, Hatakeyama E S, Noble R D, Gin D L. Ind. Eng. Chem. Res., 2007, 46 : 5397-5404
[48] Blasig A, Tang J B, Hu X, Tan S, Shen Y Q, Radosz M. Ind. Eng. Chem. Res., 2007, 46 : 5542-5547
[49] Blasig A, Tang J B, Hu X, Shen Y Q, Radosz M. Fluid Phase Equilib., 2007, 256 : 75-80
[50] Tang J B, Tang H D, Sun W L, Radosz M, Shen Y Q. Polymer, 2005, 46 : 12460-12467
[51] Tang J B, Tang H D, Sun W L, Radosz M, Shen Y Q. J. Polym. Sci. A: Polym. Chem., 2005, 43 : 5477-5489
[52] Tang J B, Shen Y Q, Radosz M, Sun W L. Ind. Eng. Chem. Res., 2009, 48 : 9113-9118
[53] Bara J E, Gabriel C J, Hatakeyama E S. J. Membr. Sci., 2008, 321 : 3-7
[54] Bara J E, Hatakeyama E S, Gin D L, Noble R D. Polym. Adv. Technol., 2008, 19 : 1415-1420
[55] Bara J E, Camper D E, Gin D L, Noble R D. Acc. Chem. Res., 2010, 43 : 152-159
[56] Ventura S P M, Pauly J, Daridon J L, de Silva J A L, Marrucho I M, Dias A M A, Coutinho J A P. J. Chem. Thermodyn., 2008, 40 : 1187-1192
[57] Li X, Hou M, Zhang Z, Han B, Yang G, Wang X, Zou L. Green Chem., 2008, 10 : 879-884
[58] Camper D, Bara J E, Gin D L, Noble R D. Ind. Eng. Chem. Res., 2008, 47 : 8496-8498
[59] Zhang F, Fang C G, Wu Y T, Wang Y T, Li A M, Zhang Z B. Chem. Eng. J., 2010, 160 : 691-697
[60] Zhao Y S, Zhang X P, Zhang S J, Zhou Q, Dong H F, Tian X, Zhang S J. J. Chem. Eng. Data, 2010, 55 : 3513-3519

[1] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[2] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[3] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[4] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[5] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[6] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[7] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[8] Dechao Wang, Yangyang Xin, Xiaoqian Li, Dongdong Yao, Yaping Zheng. Porous liquids and Their Applications in Gas Capture and Separation [J]. Progress in Chemistry, 2021, 33(10): 1874-1886.
[9] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[10] Bo Li, Lijian Ma, Ning Luo, Shoujian Li, Yunming Chen, Jinsong Zhang. Extraction and Separation of Uranium via Solid Phase Extraction [J]. Progress in Chemistry, 2020, 32(9): 1316-1333.
[11] Fengfeng Gao, Yanyan Yang, Xiao Du, Xiaogang Hao, Guoqing Guan, Bing Tang. Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM [J]. Progress in Chemistry, 2020, 32(9): 1344-1351.
[12] Guohua Xu, Kai Cheng, Chen Wang, Conggang Li. Multi-Hierarchical Structural Characterization of Biological Condensed Matters [J]. Progress in Chemistry, 2020, 32(8): 1231-1239.
[13] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[14] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[15] Xiaojian Li, Haijun Zhang, Saisai Li, Jun Zhang, Quanli Jia, Shaowei Zhang. Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties [J]. Progress in Chemistry, 2020, 32(6): 851-860.
Viewed
Full text


Abstract

Capture of CO2 by Ionic Liquids