中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Gas Separation Based on Ionic Liquids

Zhao Xu, Xing Huabin, Li Rulong, Yang Qiwei, Su Baogen, Ren Qilong   

  1. National Laboratory of Secondary Resources Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Contact: Xing Huabin E-mail:xinghb@zju.edu.cn
PDF ( 2146 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, ionic liquids have attracted considerable interests in the field of gas separation, due to their selective dissolution of certain gases, nearly non-volatility and tunable property and structure. In this article, the solubilities of CO2, SO2, H2, O2, CO, N2, Ar, Xe and short-chain alkanes, alkenes, alkynes in ionic liquids are summarized. The mechanism and the qualitative relationship between gas solubility and the structure of ionic liquid are introduced. Functionalized ionic liquids containing basic groups such as amino and guanidine have high performance to capture CO2 and SO2. The solubilities of alkenes in ionic liquids can be improved by adding unsaturated groups in ionic liquids via π-π interaction, and the solubility of alkynes in ionic liquids increases with increasing hydrogen-bond basicity of ionic liquids. The progress involving molecular simulation of ionic liquid/gas binary system, correlation models of gas solubility, and gas separation based on immobilized ionic liquids are introduced and summarized. Finally, the existing problems and development directions in the future of gas separation using ionic liquids are discussed.

Contents
1 Introduction
2 Solubilities of gases in ionic liquids
2.1 Acidic gases
2.2 Organic gases
2.3 Other gases
3 Molecular simulation study of ionic liquid/gas mixture
4 Correlation models of gas solubility in ionic liquids
5 Gas separation based on immobilized ionic liquids
6 Conclusions and outlook

CLC Number: 

[1] Brennecke J F, Maginn E J. AIChE J., 2001, 47 : 2384-2389
[2] Winkel A, Reddy P V G, Wilhelm R. Synthesis, 2008, 7 : 999-1016
[3] Baudequin C, Baudoux J, Levillain J, Cahard D, Gaumont A C, Plaquevent J C. Tetrahedron: Asymmetry, 2003, 14 : 3081-3093
[4] Zhao D B, Fei Z F, Geldbach T J, Scopelliti R, Dyson P J. J. Am. Chem. Soc., 2004, 126 : 15876-15882
[5] Lee S G. Chem. Commun., 2006, 1049-1063
[6] Giernoth R. Angew. Chem. Int. Ed., 2010, 49 : 2834-2839
[7] Olivier-Bourbigou H, Magna L, Morvan D. Applied Catalysis A: General, 2010, 373 : 1-56
[8] Holbrey J D, Seddon K R. Clean Prod. Proc., 1999, 1 : 223-236
[9] Seddon K R. J. Chem. Tech. Biotechnol., 1997, 68 : 351-356
[10] Marsh K N, Boxall J A, Lichtenthaler R. Fluid Phase Equilib., 2004, 219 : 93-98
[11] DeSimone J M. Science, 2002, 297 : 799-803
[12] Welton T. Chem. Rev., 1999, 99 : 2071-2083
[13] Sheldon R. Chem. Commun., 2001, 2399-2407
[14] Xing H B, Wang T, Zhou Z H, Dai Y Y. J. Mol. Cata. A: Chem., 2007, 264 : 53-59
[15] Endres F. ChemPhysChem, 2002, 3 : 144-154
[16] Zhao F, Wu X E, Wang M K, Liu Y, Gao L X, Dong S J. Anal. Chem., 2004, 76 : 4960-4967
[17] Armstrong D W, He L F, Liu Y S. Anal. Chem., 1999, 71 : 3873-3876
[18] Yang Q W, Xing H B, Cao Y F, Su B G, Yang Y W, Ren Q L. Ind. Eng. Chem. Res., 2009, 48 : 6417-6422
[19] Han X X, Armstrong D W. Acc. Chem. Res., 2007, 40 : 1079-1086
[20] Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, Morris R E. Nature, 2004, 430 : 1012-1016
[21] Zhou Y, Schattka J H, Antonietti M. Nano Letters, 2004, 4 : 477-481
[22] Van Rantwijk F, Sheldon R A. Chem. Rev., 2007, 107 : 2757-2785
[23] Bara J E, Carlisle T K, Gabriel C J, Camper D, Finotello A, Gin D L, Noble R D. Ind. Eng. Chem. Res., 2009, 48 : 2739-2751
[24] Bates E D, Mayton R D, Ntai I, Davis J H. J. Am. Chem. Soc., 2002, 124 : 926-927
[25] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Nature, 1999, 399 : 28-29
[26] Scurto A M, Aki S N V K, Brennecke J F. J. Am. Chem. Soc., 2002, 124 : 10276-10277
[27] Scovazzo P, Kieft J, Finan D A, Koval C, Dubois D, Noble R. J. Membr. Sci., 2004, 238 : 57-63
[28] Bara J E, Camper D E, Gin D L, Noble R D. Acc. Chem. Res., 2010, 43 : 152-159
[29] Poole C F. J. Chromatogr. A, 2004, 1037 : 49-82
[30] Jiang Y Y, Wang G N, Zhou Z, Wu Y T, Geng J, Zhang Z B. Chem. Commun., 2008, 505-507
[31] Yu H, Wu Y T, Jiang Y Y, Zhou Z, Zhang Z B. New J. Chem., 2009, 33 : 2385-2390
[32] Anthony J L, Anderson J L, Maginn E J, Brennecke J F. J. Phys. Chem. B, 2005, 109 : 6366-6374
[33] Cadena C, Anthony J L, Shah J K, Morrow T I, Brennecke J F, Maginn E J. J. Am. Chem. Soc., 2004, 126 : 5300-5308
[34] Hert D G, Anderson J L, Aki S N V K, Brennecke J F. Chem. Commun., 2005, 2630-2605
[35] Muldoon M J, Anderson J L, Dixon J K, Aki S N V K, Brennecke J F. J. Phys. Chem. B, 2007, 111 : 9001-9009
[36] Almantariotis D, Gefflaut T, Pádua A A H, Coxam J Y, Gomes M F C. J. Phys. Chem. B, 2010, 114 : 3608-3617
[37] Aki S N V K, Mellein B R, Saurer E M, Brennecke J F. J. Phys. Chem. B, 2004, 108 : 20355-20365
[38] Deschamps J, Gomes M F C, Pádua A A H. ChemPhysChem, 2004, 5 : 1049-1052
[39] Kazarian S G, Briscoe B J, Welton T. Chem. Commun., 2000, 2047-2048
[40] Zhang J, Zhang Q H, Qiao B T, Deng Y Q. J. Chem. Eng. Data, 2007, 52 : 2277-2283
[41] Chen Y H, Zhang S J, Yuan X L, Zhang Y Q, Zhang X P, Dai W B, Mori R. Thermochim. Acta, 2006, 441 : 42-44
[42] Ferguson L, Scovazzo P. Ind. Eng. Chem. Res., 2007, 46 : 1369-1374
[43] Fukumoto K, Yoshizawa M, Ohno H. J. Am. Chem. Soc., 2005, 127 : 2398-2399
[44] Kagimoto J, Fukumoto K, Ohno H. Chem. Commun., 2006, 2254-2256
[45] Zhao H, Jackson L, Song Z, Olubajo O. Tetrahedron: Asymmetry, 2006, 17 : 1549-1553
[46] Tao G, He L, Sun N, Kou Y. Chem. Commun., 2005, 3562-3564
[47] Fukumoto K, Ohno H. Chem. Commun., 2006, 3081-3083
[48] Tao G, He L, Liu W, Xu L, Xiang W, Wang T, Kou Y. Green Chem., 2006, 8 : 639-646
[49] Zhang J M, Zhang S J, Dong K, Zhang Y Q, Shen Y Q, Lv X M. Chem. Eur. J., 2006, 12 : 4021-4026
[50] Zhang Y Q, Zhang S J, Lu X M, Zhou Q, Fan W, Zhang X P. Chem. Eur. J., 2009, 15 : 3003-3011
[51] Wang C M, Luo X Y, Luo H M, Jiang D E, Li H R, Dai S. Angew. Chem. Int. Ed., 2011, 50 : 1-6
[52] Wu W Z, Han B X, Gao H X, Liu Z M, Jiang T, Huang J. Angew. Chem. Int. Ed., 2004, 43 : 2415-2417
[53] Huang J, Riisager A, Wasserscheid P, Fehrmann R. Chem. Commun., 2006, 4027-4029
[54] Huang J, Riisager A, Berg R W, Fehrmann R. J. Mol. Catal. A: Chem., 2008, 279 : 170-176
[55] Yuan X L, Zhang S J, Lu X M. J. Chem. Eng. Data, 2007, 52 : 596-599
[56] Anderson J L, Dixon J K, Maginn E J, Brennecke J F. J. Phys. Chem. B, 2006, 110 : 15059-15062
[57] Camper D, Becker C, Koval C, Noble R. Ind. Eng. Chem. Res., 2005, 44 : 1928-1933
[58] Condemarin R, Scovazzo P. Chem. Eng. J., 2009, 147 : 51-57
[59] Lee B C, Outcalt S L. J. Chem. Eng. Data, 2006, 51 : 892-897
[60] Palgunadi J, Kim H S, Lee J M, Jung S. Chem. Eng. Process., 2010, 49 : 192-198
[61] Palgunadi J, Hong S Y, Lee J K, Lee H, Lee S D, Cheong M, Kim H S. J. Phys. Chem. B, 2011, 115 : 1067-1074
[62] Lee J M, Palgunadi J, Kim J H, Jung S, Choi Y S, Cheong M, Kim H S. Phys. Chem. Chem. Phys., 2010, 12 : 1812-1816
[63] Kumelan J, Kamps Á P S, Tuma D, Maurer G. J. Chem. Eng. Data, 2006, 51 : 1364-1367
[64] Kumelan J, Kamps Á P S, Tuma D, Maurer G. Fluid Phase Equilib., 2007, 260 : 3-8
[65] Kumelan J, Kamps Á P S, Tuma D, Maurer G. J. Chem. Eng. Data, 2010, 55 : 165-172
[66] Finotello A, Bara J E, Camper D, Noble R D. Ind. Eng. Chem. Res., 2008, 47 : 3453-3459
[67] Jacquemin J, Gomes M F C, Husson P, Majer V. J. Chem. Thermodyn., 2006, 38 : 490-502
[68] Jacquemin J, Husson P, Majer V, Gomes M F C. Fluid Phase Equilib., 2006, 240 : 87-95
[69] Kumelan J, Kamps Á P S, Urukova I, Tuma D, Maurer G. J. Chem. Thermodyn., 2005, 37 : 595-602
[70] Kumelan J, Kamps Á P S, Tuma D, Maurer G. Ind. Eng. Chem. Res., 2007, 46 : 8236-8240
[71] Kumelan J, Kamps Á P S, Tuma D, Maurer G. J. Chem. Eng. Data, 2007, 52 : 2319-2324
[72] Prasad B R, Senapati S. J. Phys. Chem. B, 2009, 113 : 4739-4743
[73] Shah J K, Maginn E J. J. Phys. Chem. B, 2005, 109 : 10395-10405
[74] Husson-Borg P, Majer V, Gomes M F C. J. Chem. Eng. Data, 2003, 48 : 480-485
[75] Hong G, Jacquemin J, Deetlefs M, Hardacre C P. Husson P, Gomes M F C. Fluid Phase Equilib., 2007, 257 : 27-34
[76] Soriano A N, Doma B T, Li M H. J. Chem. Thermodyn., 2008, 40 : 1654-1660
[77] Soriano A N, Doma B T, Li M H. J. Chem. Thermodyn., 2009, 41 : 525-529
[78] Jalili A H, Mehdizadeh A, Shokouhi M, Sakhaeinia H, Taghikhani V. J. Chem. Thermodyn., 2010, 42 : 787-791
[79] Camper D, Scovazzo P, Koval C, Noble R. Ind. Eng. Chem. Res., 2004, 43 : 3049-3054
[80] Scovazzo P, Camper D, Kieft J, Poshusta J, Koval C, Noble R. Ind. Eng. Chem. Res., 2004, 43 : 6855-6860
[81] Holbrey J D, Seddon K R. J.Chem. Soc. Dalton Tran., 1999, 2133-2139
[82] Kilaru P K, Condemarin R A, Scovazzo P. Ind. Eng. Chem. Res., 2008, 47 : 900-909
[83] Kilaru P K, Scovazzo P. Ind. Eng. Chem. Res., 2008, 47 : 910-919
[84] Yokozeki A, Shiflett M B. Energy Fuels, 2009, 23 : 4701-4708
[85] Shiflett M B, Yokozeki A. Energy Fuels, 2010, 24 : 1001-1008
[86] Jacquemin J, Husson P, Padua A A H, Majer V. Green Chem., 2006, 8 : 172-180
[87] Tang J B, Sun W L, Tang H D, Radosz M, Shen Y Q. Macromolecules, 2005, 38 : 2037-2039
[88] Tang J B, Tang H D, Sun W L, Radosz M, Shen Y Q. J. Polym. Sci. A: Polym. Chem., 2005, 43 : 5477-5489
[89] Tang J B, Tang H D, Sun W L, Plancher H, Radosz M, Shen Y Q. Chem. Commun., 2005, 3325-3327
[90] Blasig A, Tang J B, Hu X D, Tan S P, Shen Y Q, Radosz M. Ind. Eng. Chem. Res., 2007, 46 : 5542-5547
[91] Zhang Z M, Wu L B, Dong J, Li B G, Zhu S P. Ind. Eng. Chem. Res., 2009, 48 : 2142-2148
[92] Scovazzo P, Visser A E, Davis J H, Rogers R D, Koval C A, Dubois D L, Noble R D. ACS Symposium Series (Eds. Rogers R D, Seddon K R ). San Diego: Ionic Liquids-Industuial Applications for Green Chemistry, 2002, 818 : 69-87
[93] Jiang Y Y, Zhou Z, Jiao Z, Li L, Wu Y T, Zhang Z B. J. Phys. Chem. B, 2007, 111 : 5058-5061
[94] Gan Q, Rooney D, Zou Y R. Desalination, 2006, 199 : 535-537
[95] Gan Q, Rooney D, Xue M L, Thompson G, Zou Y R. J. Membr. Sci., 2006, 280 : 948-956
[96] Bara J E, Lessmann S, Gabriel C J, Hatakeyama E S, Noble R D, Gin D L. Ind. Eng. Chem. Res., 2007, 46 : 5397-5404
[97] Hu X D, Tang J B, Blasig A, Shen Y Q, Radosz M. J. Membr. Sci., 2006, 281 : 130-138

[1] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[2] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[3] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[4] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[5] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[6] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[7] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[8] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[9] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[10] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[11] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[12] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[13] Xinhua Cao, Qingqing Han, Aiping Gao, Guixia Wang. Supramolecular Gel with Response Towards Gaseous Acid and Organic Amine [J]. Progress in Chemistry, 2021, 33(9): 1538-1549.
[14] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[15] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
Viewed
Full text


Abstract

Gas Separation Based on Ionic Liquids