中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Enzyme-Catalyzed Regioselective Synthesis of Carbohydrate Fatty Acid Esters in Ionic Liquids

Shi Yugang1,2, Cai Yan3, Li Jianrong1, Chu Yenho2   

  1. 1. School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China;
    2. Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, China;
    3. School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
  • Received: Revised: Online: Published:
  • Contact: Shi Yugang E-mail:yugangshi@126.com
PDF ( 858 ) Cited
Export

EndNote

Ris

BibTeX

Carbohydrate fatty acid esters (CFAE) are nonionic biosurfactants, which can be synthesized from the enzyme-catalyzed esterification/transesterification of carbohydrates. These esters are increasingly used as valuable commodity chemicals in food, pharmaceutical and cosmetic industries. In addition, some CFAE also show antitumor and/or antibiotic activities. CFAE could be prepared enzymatically under mild conditions with a high regioselectivity. Synthesis of CFAE in non-aqueous solvents is difficult due to the low solubility of carbohydrates. The multi-hydroxyl groups of carbohydrates and the immiscibility with the acyl group donor are the major obstacles in the CFAE synthesis process. Although traditional water-miscible organic solvents also enhance solubility, they often inactivate enzymes. However, ionic liquids do not even when they have similar polarities. The use of ionic liquids has offered many advantages to the biocatalysis field, including improved enzyme's activity and stability, and better substrate dissolution makes the initial acylation faster and makes the regioselective acylation of sugars higher. Ionic liquids may be greener than organic solvents because the reaction system can be reused/recycled. Here, the main factors (enzymes, the solubility of substrates in ILs, property of substrates) affecting the enzymatic reaction are introduced. The latest progress of research on enzymatic synthesis of CFAE in ionic liquids is reviewed. In addition, the existing problems in the field of enzymatic synthesis of CFAE as well as its future perspectives are pointed out.

Contents
1 Introduction
2 Enzymes for the synthesis of CFAE
2.1 Enzymes from different sources
2.2 The pretreatment of enzymes
3 Ionic liquids and carbohydrates
3.1 Ionic liquids
3.2 Ionic liquids that dissolve carbohydrates
4 Property of substrates
5 Enzymatic synthesis of CFAE in ionic liquids
5.1 Monosaccharides
5.2 Disaccharides
5.3 Polysaccharides
5.4 Other related compounds
6 Conclusion and future outlook

CLC Number: 

[1] Holmberg K. Curr. Opin. Colloid Interface Sci., 2001, 6: 148-159
[2] Johansson I, Svensson M. Curr. Opin. Colloid Interface Sci., 2001, 6: 178-188
[3] Zhang W, Jia C, Wang Y, Kim J M, Jiang P, Zhang X. Food Chem., 2009, 112: 421-427
[4] Nishikawa Y, Okabe M, Yoshimoto K, Kurono G, Fukuoka F. Chem. Pharm. Bull., 1976, 24: 387-393
[5] Watanabe T, Katayama S, Matsubara M, Honda Y, Kuwahara M. Curr. Microbiol., 2000, 41: 210-213
[6] McKenzie C L, Weathersbee Ⅲ A A, Puterka G J. J. Econ. Entomol., 2005, 98: 1242-1247
[7] Habulin M, Sabeder S, Knez Z. J. Supercrit. Fluids, 2008, 45: 338-345
[8] Devulapalle K S, Segura A G, Ferrer M, Alcalde M, Mooser G, Plou F J. Carbohyd. Res., 2004, 339: 1029-1034
[9] Okabe S, Suganuma M, Tada Y, Ochiai Y, Sueoka E, Kohya H, Shibata A, Takahashi M, Mizutani M, Matsuzaki T, Fujiki H. J. Cancer. Res., 1999, 90: 669-676
[10] Kennedy J F, Kumar H, Panesar P S, Marwaha S S, Goyal R, Parmar A, Kaur S. J. Chem. Technol. Biotechnol., 2006, 81: 866-876
[11] Chang S W, Shaw J F. New Biotechnol., 2009, 26: 109-116
[12] MacManus D A, Vulfson E N. Enzyme Microb. Technol., 1997, 20: 225-228
[13] Bruno D, Monica L, Giannantonio S. J. Mol. Catal. B-Enzym., 1997, 3: 193-201
[14] Pedersen N R, Halling P J, Pedersen L H, Matthiesen R, Veltman O R. FEBS Lett., 2002, 519: 181-184
[15] Rich J O, Bedell B A, Dordick J S. Biotechnol. Bioeng., 1995, 45: 426-434
[16] Kim J E, Han J J, Yoon J H, Rhee J S. Biotechnol. Bioeng., 1998, 57: 121-125
[17] Ferrer M, Crucesm M A, Bernabé M, Ballesteros A, Plou F J. Biotechnol. Bioeng., 1999, 65: 10-16
[18] Cruces M A, Otero C, Bernabé M L, Ballesteros A. Ann. N. Y. Acad. Sci., 1992, 672: 436-443
[19] Soedjak H S, Spradlin J E. Biocatal. Biotransform., 1994, 11: 241-248
[20] Polat T, Bazin H G, Linhardt R J. J. Carbohydr. Chem., 1997, 16: 1319-1325
[21] Pedersen N R, Wimmer R, Matthiesen R, Pedersen L H, Gessesse A. Tetrahedron: Asymmetry, 2003, 14: 667-673
[22] Borgesm R, Balaban R. Macromol. Symp., 2007, 258: 25-29
[23] Ritthitham S, Wimmer R, Stensballe A, Pedersen L H. J. Mol. Catal. B-Enzym., 2009, 59: 266-273
[24] Li G Y, Cai Y J, Liao X R, Yin J. Biotechnol. Lett., 2011, 33: 607-610
[25] Plou F J, Crucesm A, Ferrer M, Fuentes G, Pastor E, Bernabé M, Christensen M, Comelles F, Parra J L, Ballesteros A. J. Biotechnol., 2002, 96: 55-66
[26] Cao L, Bornscheuer U T, Schmid R D. J. Mol. Catal. B-Enzym., 1999, 6: 279-285
[27] Plou F J, Crucesm A, Pastor E, Ferrer M, Bernabé M, Ballesterose A. Biotechno. Lett., 1999, 21: 635-639
[28] Ferrer M, Plou F J, Fuentes G, Cruces M A, Andersen L, Kirk O, Christensen M, Ballesteros A. Biocatal. Biotransform., 2002, 20: 63-71
[29] Ganske F, Bornscheuer U T. Org. Lett., 2005, 7: 3097-3098
[30] Tsuzuki W, Kitamura Y, Suzuki T, Kobayashi S. Biotechnol. Bioeng., 1999, 64: 267-271
[31] Maruyama T, Nagasawa S I, Goto M. J. Biosci. Bioeng., 2002, 94: 357-361
[32] Itoh T, Han S, Matsushita Y, Hayase S. Green Chem., 2004, 6: 437-439
[33] Itoh T, Matsushita Y, Abe Y, Han S H, Wada S, Hayase S, Kawatsura M, Takai S, Morimoto M, Hirose Y. Chem. Eur. J., 2006, 12: 9228-9237
[34] Lozano P, Piamtongkam R, Kohns K, De Diego T, Vaultier M, Iborra J L. Green Chem., 2007, 9: 780-784
[35] Mutschler J, Rausis T, Bourgeois J M, Bastian C, Zufferey D, Mohrenz I V, Fischer F. Green Chem., 2009, 11: 1793-1800
[36] Paulechka Y U, Kabo G J, Blokhin A V, Vydrov O A. J. Chem. Eng. Data, 2003, 48: 457-462
[37] Kosmulski M G, Rosenholm J J B. Thermochim. Acta, 2004, 412: 47-53
[38] Van Rantwijk F, Sheldon R A. Chem. Rev., 2007, 107: 2757-2785
[39] Rooney D, Jacquemin J, Gardas R. Top. Curr. Chem., 2010, 290: 185-212
[40] Murugesan S, Linhardt R J. Curr. Org. Synth., 2005, 2: 437-451
[41] Spear S K, Visser A E, Rogers R D. SPRI Conference on Sugar processing Research (Ed. Godshall M A). New Orleans: Sugar Processing Research Institute, Inc., 2002. 336-340
[42] Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2002, 124: 4974-4975
[43] Li X, Geng Y, Simonsen J, Li K C. Holzforschung, 2004, 58: 280-285
[44] Pernak J, Zabielska-Matejuk J, Kropacz A, Foksowicz-Flaczyk J. Holzforschung, 2004, 58 (3): 286-291
[45] Przybysz K, Drzewińska E, Stanislawska A, Wysocka-Robak A. Ind. Eng. Chem. Res., 2005, 44: 4599-4604
[46] Anderson J L, Ding J, Welton T, Armstrong D W. J. Am. Chem. Soc., 2002, 124: 14247-14254
[47] Moulthrop J S, Swatloski R P, Moyna G, Rogers R D. Chem. Commun., 2005, 1557-1559
[48] Kimizuka N, Nakashima T. Langmuir, 2001, 17: 6759-6761
[49] 石玉刚 (Shi Y G). 江南大学博士论文(Doctoral Dissertation of Jiangnan University), 2009
[50] Tseng M C, Chu Y H. Chem. Commun., 2010, 2983-2985
[51] Tseng M C, Tseng M J, Chu Y H. Chem. Commun., 2009, 7503-7505
[52] Sowmiah S, Srinivasadesikan V, Tseng M C, Chu Y H. Molecules, 2009, 14: 3780-3813
[53] Chen C W, Tseng M C, Hsiao S K, Chen W H, Chu Y H. Org. Biomol. Chem., 2011, 9: 4188-4193
[54] Ferrer M, Soliveri J, Plou F J, Reyes-Duarte L C D, Christensen M, Copa-Patino J L, Ballesteros A. Enzyme Microb. Technol., 2005, 36: 391-398
[55] Polat T, Bazin H G, Linhardt R J. J. Carbohydr. Chem., 1997, 16: 1319-1325
[56] Sarney D B, Barnard M J, Macmanus D A, Vulfson E N. J. Am. Oil Chem. Soc., 1996, 73: 1481-1487
[57] Kim M J, Choi M Y, Lee J K, Ahn Y. J. Mol. Catal. B: Enzym., 2003, 26: 115-118
[58] Lkeda I, Klibanov A M. Biotechnol. Bioeng., 1993, 42: 788-791
[59] 高红霞(Gao H X), 冯骉(Feng B), 张晓鸣(Zhang X M), 贾承胜(Jia C S). 食品与发酵工业(Food and Fermentation Industries), 2007, 33: 5-8
[60] Park S, Kazlauskas R J. J. Org. Chem., 2001, 66: 8395-8401
[61] Lee S H, Hiep N M, Koo Y M, Ha S H. Process Biochem., 2008, 43: 1009-1012
[62] Ha S H, Hiep N M, Koo Y M. Biotechnol. Bioprocess Eng., 2010, 15: 126-130
[63] Liu Q B, Janssen M H A, van Rantwijk F, Sheldon R A. Green Chem., 2005, 7: 39-42
[64] Patil D R, Rethwisch D G, Dordick J S. Biotechnol. Bioeng., 1991, 37: 639-646
[65] Quan J, Xu J M, Liu B K, Zheng C Z, Lin X F. Enzyme Microb. Tech., 2007, 41: 756-763
[66] Weber H K, Stecher H, Faber K. Biotechnol. Lett., 1995, 17: 803-808
[67] Cauglia F, Canepa P. Bioresour. Technol., 2008, 99: 4065-4072
[68] Chamouleau F, Coulon D, Girardin M, Ghoul M. J. Mol. Catal. B-Enzym., 2001, 11: 949-954
[69] Zhao H, Baker G A, Song Z Y, Olubajo O, Crittle T, Peter D. Green Chem., 2008, 10: 696-705
[70] Réjasse B, Lamare S, Legoy M D, Besson T. J. Enzym. Inhib. Med. Chem., 2007, 22: 519-527
[71] Lee S H, Ha S H, Hiep N M, Chang W J, Koo Y M. J. Biotechnol., 2008, 133: 486-489
[72] Lee S H, Dang D T, Ha S H, Chang W J, Koo Y M. Biotechnol. Bioeng., 2008, 99: 1-8
[73] Tai H P, Brunner G. J. Supercrit. Fluids, 2009, 48: 36-40.
[74] Zhao H. J. Chem. Technol. Biotechnol., 2010, 85: 891-907
[75] Moniruzzaman M, Nakashima K, Kamiya N, Goto M. Biochem. Eng. J., 2010: 48: 295-314
[76] Lozano P. Green Chem., 2010, 12: 555-569
[77] Edgar K J. Cellulose, 2007, 14: 49-64
[78] Gradwell S. Comptes Rendus Biologies, 2004, 327: 945-953
[79] Wibowo A, Misra M, Park H, Drzal L, Schalek R, Mohanty A. Composites Part A, 2006, 37: 1428-1433
[80] Yin C Y, Li J B, Xu Q, Peng Q, Liu Y B, Shen X Y. Carbohydr. Polym., 2007, 67: 147-154
[81] Sereti V, Stamatis H, Koukios E, Kolisis F N. J. Biotechnol., 1998, 66: 219-223
[82] Heinze T, Schwikal K, Barthel S. Macromol. Biosci., 2005, 5: 520-525
[83] Schlufter K, Schmauder H P, Dorn S, Heinze T. Macromol. Rapid Commun., 2006, 27: 1670-1676
[84] Barthel S, Heinze T. Green Chem., 2006, 8: 301-306
[85] Zhang H, Wu J, Zhang J, He J S. Macromolecules, 2005, 38: 8272-8277
[86] Wu J, Zhang J, Zhang H, He J S, Ren Q, Guo M L. Biomacromolecules, 2004, 5: 266-268
[87] Cao Y, Wu J, Meng T, Zhang J, He J S, Li H Q, Zhang Y. Carbohydr. Polym., 2007, 69: 665-672
[88] 曹妍(Cao Y), 李会泉(Li H Q), 张懿(Zhang Y), 张军(Zhang J), 何嘉松(He J S). 高等学校化学学报(Chemical Journal of Chinese Universities), 2008, 29: 2115-2117
[89] Gremos S, Zarafeta D, Kekos D, Kolisis F. Bioresour. Technol., 2011, 102: 1378-1382
[90] Chen Z G, Zong M H, Li G J. J. Chem. Technol. Biotechnol., 2006, 81: 1225-1231
[91] Humeau C, Girardin M, Rovel B, Miclo A. J. Biotechnol., 1998, 63: 1-8
[92] Humeau C, Girardin M, Rovel B, Miclo A. J. Mol. Catal. B-Enzym., 1998, 5: 19-23
[93] Watanabe Y, Minemoto Y. Adachi S, Nakanishi Ka, Shimada Y, Matsuno R. Biotechnol. Lett., 2000, 22: 637-640
[94] Yan Y, Bornscheuer U T, Schmid R D. Biotechnol. Lett., 1999, 21: 1051-1054
[95] Park S, Viklund F, Hult K, Kazlauskas R J. Green Chem., 2003, 5: 715-719
[96] Kaftzik N, Wasserscheid P, Kragl U. Org. Proc. Res. Dev., 2002, 6: 553-557
[97] Nara S J, Mohile S S, Harjani J R, Naik P U, Salunkhe M M. J. Mol. Catal. B-Enzym., 2004, 28: 39-43
[98] Li X F, Lou W Y, Smith T J, Zong M H, Wu H, Wang J F. Green Chem., 2006, 8: 538-544
[99] Malhotra S V, Zhao H. Chirality, 2005, 17: S240-S242
[100] Ku M A, Hang Y D. Biotechnol. Lett., 1995, 17: 1081-1084

[1] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[2] Fengguo Liu, Bo Wang, Lianyu Zhang, Aimin Liu, Zhaowen Wang, Zhongning Shi. Application of Ionic Liquids in Aluminum and Alloy Electrodeposition [J]. Progress in Chemistry, 2020, 32(12): 2004-2012.
[3] Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li, Shouxin Liu. Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids [J]. Progress in Chemistry, 2019, 31(8): 1136-1147.
[4] Zhiyong Li, Ying Feng, Huiyong Wang, Xiaoqing Yuan, Yuling Zhao, Jianji Wang. Structure and Performance Modulation of Photo-Responsive Ionic Liquids [J]. Progress in Chemistry, 2019, 31(11): 1550-1559.
[5] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[6] Haidong Cheng, Shuangjun Chen*. Degradation and Synthesis of Poly (Ethylene Terephthalate) by Functionalized Ionic Liquids [J]. Progress in Chemistry, 2017, 29(4): 443-449.
[7] Xingpeng Chen, Jiaxi Xu*. Regioselective Ring-Opening Reactions of Unsymmetric Azetidines [J]. Progress in Chemistry, 2017, 29(2/3): 181-197.
[8] Song Heyuan, Kang Meirong, Jin Ronghua, Jin Fuxiang, Chen Jing. Application of Ionic Liquids to the Carbonylation Reactions [J]. Progress in Chemistry, 2016, 28(9): 1313-1327.
[9] Yang Xuzhao, Wang Jun, Fang Yun. Synthesis, Properties and Applications of Dicationic Ionic Liquids [J]. Progress in Chemistry, 2016, 28(2/3): 269-283.
[10] Li Siqi, Xu Jiaxi*. Selective Ring-Opening reactions of Unsymmetric Oxetanes [J]. Progress in Chemistry, 2016, 28(12): 1798-1810.
[11] Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye. Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis [J]. Progress in Chemistry, 2015, 27(1): 27-37.
[12] Li Qingchuan, Cao Lixin, Hu Haifeng, Wang Kai, Yan Peisheng. Electrochemical Biosensors for Aflatoxin Analysis [J]. Progress in Chemistry, 2014, 26(04): 657-664.
[13] Lai Qingxue, Zhang Xiaogang, Liang Yanyu. Synthesis and Application of Nitrogen-Containing Carbon Nanomaterials by Ionic Liquids as Novel Precursors [J]. Progress in Chemistry, 2013, 25(10): 1703-1712.
[14] You Hongxing, Wang Yongyong, Wang Xuezhu, Liu Ye. Syntheses and Catalytic Applications of the Transition Metal Complex-Functionalized Ionic Liquids [J]. Progress in Chemistry, 2013, 25(10): 1656-1666.
[15] Liu Shuo, Ying Anguo, Ni Yuxiang, Yang Jianguo, Xu Songlin. Application of Task-Specific Ionic Liquids to Michael Additions [J]. Progress in Chemistry, 2013, 25(08): 1313-1324.