中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Application of Metal Oxides in Electrocatalysts for Low Temperature Fuel Cells

Zhang Na, Zhang Sheng, Zhu Tong, Yin Geping   

  1. School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, China
  • Received: Revised: Online: Published:
PDF ( 1350 ) Cited
Export

EndNote

Ris

BibTeX

Low-temperature fuel cells can be as an ideal portable power, due to the high specific power and specific energy, low-temperature operation and environmentally friendly. It is considered to be a promising fuel cell. But owing to the high cost and low electrochemical stability of the traditional Pt/C catalyst, the commercialization of PEMFCs is hindered. Metal oxides, however, with high stability in the fuel cells work conditions, is beneficial to improve catalytic performance of catalysts due to strong interaction between metals and metal oxides, which might alert absorption properties of oxygen or fuel on the catalyst surface. In this paper, metal oxides as co-catalysts are employed to enhance the electrocatalytic activity and stability for fuel cell electrocatalysts. The latest research progress of niobium oxides, manganese oxides, titanium oxides, tungsten oxides and tin oxides in fuel cells is highlighted. Finally, the urgent existing main problems in this area are discussed and the future research trends are prospected.

Contents
1 Introduction
2 Research status of metal oxides in low-temperature fuel cells
2.1 Manganese oxides
2.2 Titanium oxides
2.3 Tin oxides
2.4 Tungsten oxides
2.5 Niobium oxides
2.6 Other metal oxides
3 Summary and prospects

CLC Number: 

[1] Li W Z, Sun G Q, Yan Y S, Qin X. Prog. Chem., 2005, 17: 761-772
[2] Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Appl. Catal. B-Environ., 2005, 56: 9-35
[3] Fan B, Guo Y G, Wan L J. Prog. Chem., 2010, 22: 852-860
[4] Shao Y, Zhang S, Wang C, Nie Z, Liu J, Wang Y, Lin Y. J. Power Sources, 2010, 195: 4600-4605
[5] 路蕾蕾(Lu L L), 尹鸽平(Yin G P). 化学进展(Prog. Chem.), 2010, 22: 338-344
[6] Chen J Y, Lim B, Lee E P, Xia Y N. Nano Today, 2009, 4: 81-95
[7] Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Science, 2007, 316: 732-735
[8] Zhang S, Shao Y Y, Yin G P, Lin Y H. Appl. Catal. B-Environ., 2011, 102: 372-377
[9] Lim B, Jiang M, Camargo P H C, Cho E C, Tao J, Lu X, Zhu Y, Xia Y. Science, 2009, 324: 1302-1305
[10] Zhang J, Sasaki K, Sutter E, Adzic R R. Science, 2007, 315: 220-222
[11] Lee H, Habas S E, Somorjai G A, Yang P. J. Am. Chem. Soc., 2008, 130: 5406-5407
[12] Zhang S, Shao Y, Liao H G, Liu J, Aksay I A, Yin G, Lin Y. Chem. Mater., 2011, 23: 1079-1081
[13] Wen Z, Liu J, Li J. Adv. Mater., 2008, 20: 743-747
[14] Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney M F, Nilsson A. Nat. Chem., 2010, 2: 454-460
[15] Zhang S, Shao Y Y, Yin G P, Lin Y H. Angew. Chem. Int. Ed., 2010, 49: 2211-2214
[16] Wei Z D, Yan C, Tan Y, Li L, Sun C X, Shao Z G, Shen P K, Dong H W. J. Phys. Chem. C, 2008, 112: 2671-2677
[17] Huang Y, Zhou X, Liao J, Liu C, Lu T, Xing W. Electrochem. Commun., 2008, 10: 621-624
[18] Zhang S, Shao Y, Yin G, Lin Y. J. Mater. Chem., 2010, 20: 2826-2830
[19] Li L, Xing Y. J. Phys. Chem. C, 2007, 111: 2803-2808
[20] Shao Y, Liu J, Wang Y, Lin Y. J. Mater. Chem., 2009, 19: 46-59
[21] Hsin Y L, Hwang K C, Yeh C T. J. Am. Chem. Soc., 2007, 129: 9999-10010
[22] Wang J, Yin G, Shao Y, Wang Z, Gao Y. J. Phys. Chem. C, 2008, 112: 5784-5789
[23] Rajeswari J, Viswanathan B, Varadarajan T K. Mater. Chem. Phys., 2007, 106: 168-174
[24] Lima F H B, Calegaro M L, Ticianelli E A. J. Electroanal. Chem., 2006, 590: 152-160
[25] Cao Y L, Yang H X, Ai X P, Xiao L F. J. Electroanal. Chem., 2003, 557: 127-134
[26] Cheng F Y, Su Y, Liang J, Tao Z L, Chen J. Chem. Mat., 2010, 22: 898-905
[27] Xiao W, Wang D L, Lou X W. J. Phys. Chem. C, 2010, 114: 1694-1700
[28] Lima F H B, Calegaro M L, Ticianelli E A. Electrochim. Acta, 2007, 52: 3732-3738
[29] Adzic R R, Wang J X. J. Phys. Chem. B, 1998, 102: 8988-8993
[30] Wang Y X, Balbuena P B. J. Phys. Chem. B, 2004, 108: 4376-4384
[31] Roche I, Scott K. J. Appl. Electrochem., 2009, 39: 197-204
[32] Roche I, Chainet E, Chatenet M, Vondrak J. J. Phys. Chem. C, 2007, 111: 1434-1443
[33] Zhou C, Peng F, Wang H, Yu H, Peng C, Yang J. Electrochem. Commun., 2010, 12: 1210-1213
[34] Zhou C M, Wang H J, Peng F, Liang J H, Yu H, Yang J. Langmuir, 2009, 25: 7711-7717
[35] Longo A, Liotta L F, Di Carlo G, Giannici F, Venezia A M, Martorana A. Chem. Mater., 2010, 22: 3952-3960
[36] Vogel W, Timperman L, Alonsovante N. Appl. Catal. A-Gen., 2010, 377: 167-173
[37] Gustavsson M, Ekstrom H, Hanarp R, Eurenius L, Lindbergh G, Olsson E, Kasemo B. J. Power Sources, 2007, 163: 671-678
[38] Saida T, Naoki O, Yoshio T, Sugimoto W. J. Phys. Chem C, 2010, 114: 13390-13396
[39] Gojkovic S L, Babic B M, Radmilovic V R, Krstajic N V. J. Electroanal. Chem., 2010, 639: 161-166
[40] Wang D L, Subban C V, Wang H S, Rus E, DiSalvo F J, Abruna H D. J. Am. Chem. Soc., 2010, 132: 10218-10220
[41] Jiang Z, Wang Z, Chu Y, Gu D, Yin G. Energy Environ. Sci., 2011, 4: 728-735
[42] Bauer A, Lee K, Song C, Xie Y, Zhang J, Hui R. J. Power Sources, 2010, 195: 3105-3110
[43] Kim D S, Zeid E F A, Kim Y T. Electrochim. Acta, 2010, 55: 3628-3633
[44] Shanmugam S, Gedanken A. J. Phys. Chem. C, 2009, 113: 18707-18712
[45] Park K, Seol K. Electrochem. Commun., 2007, 9: 2256-2260
[46] Huang S, Ganesan P, Popov B N. Appl. Catal. B-Environ., 2010, 96: 224-231
[47] Santos A L, Profeti D, Olivi P. Electrochim. Acta, 2005, 50: 2615-2621
[48] Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M B, Zhang J, Marinkovic N S, Liu P, Frenkel A I, Adzic R R. Nat. Mater., 2009, 8: 325-330
[49] Lee K, Park I, Cho Y, Jung D, Jung N, Park H, Sung Y. J. Catal., 2008, 258: 143-152
[50] Saha M S, Li R, Sun X. Electrochem. Commun., 2007, 9: 2229-2234
[51] Hung W Z, Chung W H, Tsai D S, Wilkinson D P, Huang Y S. Electrochim. Acta, 2010, 55: 2116-2122
[52] Sasaki K, Zhang L, Adzic R R. Phys. Chem. Chem. Phys., 2008, 10: 159-167
[53] Kou R, Shao Y, Mei D, Nie Z, Wang D, Wang C, Viswanathan V V, Park S, Aksay I A, Lin Y, Wang Y, Liu J. J. Am. Chem. Soc., 2011, 133: 2541-2547
[54] Du C, Chen M, Cao X, Yin G, Shi P. Electrochem. Commun., 2009, 11: 496-498
[55] Chhina H, Campbell S, Kesler O. J. Electrochem. Soc., 2007, 154: B533-B539
[56] Supothina S, Seeharaj P, Yoriya S, Sriyudthsak M. Ceram. Int., 2007, 33: 931-936
[57] Zhang Z, Wang X, Cui Z, Liu C, Lu T, Xing W. J. Power Sources, 2008, 185: 941-945
[58] Saha M S, Banis M N, Zhang Y, Li R, Sun X, Cai M, Wagner F T. J. Power Sources, 2009, 192: 330-335
[59] Ye J, Liu J, Zou Z, Gu J, Yu T. J. Power Sources, 2010, 195: 2633-2637
[60] Hou Z, Yi B, Yu H, Lin Z, Zhang H. J. Power Sources, 2003, 123: 116-125
[61] Kulesza P J, Grzybowska B, Malik M A, Galkowski M T. J. Electrochem. Soc., 1997, 144: 1911-1917
[62] Huang Y J, Dai H H, Li W S, Li G L, Shu D, Chen H Y. J. Power Sources, 2008, 184: 348-352
[63] Roh H, Potdar H S, Jun K, Han S, Kim J. Chem. Lett., 2004, 93: 203-207
[64] Aranda D A G, Schmal M. J. Catal., 1997, 171: 398-405
[65] Chun H, Kim D B, Lim D, Lee W, Lee H. Int. J. Hydrogen Energy, 2010, 35: 6399-6408
[66] Marques P, Ribeiro N F P, Schmal M, Aranda D A G, Souza M M V M. J. Power Sources, 2006, 158: 504-508
[67] Orilall M C, Matsumoto F, Zhou Q, Sai H, Abruna H D, DiSalvo F J, Wiesner U. J. Am. Chem. Soc., 2009, 131: 9389-9395
[68] Justin P, Hari K, Charan P, Ranga R G. Appl. Catal. B-Environ., 2010, 100: 510-515
[69] Takasu Y, Yoshinaga N, Sugimoto W. Electrochem. Commun., 2008, 10: 668-672
[70] El-Sayed H A, Birss V I. Nanoscale, 2010, 2: 793-798
[71] Zhou H, Wu H, Shen J, Yin A, Sun L, Yan C. J. Am. Chem. Soc., 2010, 132: 4998-4999
[72] Xu H, Hou X. Int. J. Hydrogen Energy. 2007, 32: 4397-4401
[73] Yuan H, Guo D, Li X, Yuan L, Zhu W, Chen L, Qiu X. Fuel Cells, 2009, 9: 121-127
[74] Wang J, Xi J, Bai Y, Shen Y, Sun J, Chen L, Zhu W, Qiu X. J. Power Sources, 2007, 164: 555-560
[75] Chang C H, Yuen T S, Nagao Y, Yugami H. J. Power Sources, 2010, 195: 5938-5941
[76] Scibioh M A, Kim S K, Cho E A, Lim T H, Hong S A, Ha H Y. Appl. Catal. B-Environ., 2008, 84: 773-782
[77] Zhang J, Vukmirovic M B, Xu Y, Mavrikakis M, Adzic R R. Angew. Chem. Int. Ed., 2005, 44: 2132-2135
[78] Zhang L, Wang L, Holt C M B, Navessin T, Malek K, Eikerling M H, Mitlin D. J. Phys. Chem. C, 2010, 114: 16463-16474

[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[6] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[7] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[8] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[9] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[10] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[11] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[12] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[13] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.