中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Catalytically Active Absorber in Solar Reforming of Methane

Sang Lixia, Sun Biao, Li Yanxia, Wu Yuting, Ma Chongfang   

  1. Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Key Laboratory of Heat Transfer and Energy Conversion of Beijing Municipality, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
  • Received: Revised: Online: Published:
  • Contact: Sang Li-xia E-mail:sanglixia@bjut.edu.cn
PDF ( 1318 ) Cited
Export

EndNote

Ris

BibTeX

Solar reforming of methane has attracted a great attention because this reaction can realize energy storage of high-temperature heat from concentrated solar radiation and optimal utilization of resources of natural gas. Catalytically active absorber has a key role on absorption of solar energy and reforming of methane and becomes focus of solar reforming of methane research. The article introduces that the composition of catalytically active absorber and three types of catalytically active absorbers in terms of their matrix (porous alumina and SiC ceramics, metal foam, ceramic tubular array (nicknamed “porcupine”)) combining the developments of reactor/receiver. Applied in directly irradiated solar reactor/receiver (volumetric reactor/receiver), the capability of catalytically active absorbers is mostly depended on the concentrated solar energy flux, matrix element, catalyst support (or washcoat) and active catalyst. According to the domestic and overseas researches, the future research directions and emphasis are analyzed and discussed. The future research should not only exploit the actual application system but also resolve the problem of uniform coating and combining between catalyst support and matrix for the high temperature reaction system. Photocatalytic enhancement of the reaction should also be taken into consideration, which will help to develop the cheap and efficient catalyst system.

Contents
1 Introduction
2 Catalytically active absorber of solar reforming of methane
2.1 Composition of catalytically active absorber
2.2 Porous alumina and SiC ceramic absorber
2.3 Metal foam absorber
2.4 “Porcupine” absorber
3 Analysis and prospects

CLC Number: 

[1] Steinfeld A. Encyclopedia of Physical Science and Technology, 2001, 15: 237-256
[2] Kodama T. Progress in Energy and Combustion Science, 2003, 29: 567-597
[3] Tamme R, Buck R, Epstein M, Fisher U, Sugarmen C. J. Sol. Energy Eng., 2001, 123(2): 160-163
[4] Bradford M C J, Vannice M A. Cat. Rev. Sci. Eng., 1999, 41(1): 1-42
[5] 居怀明(Ju H M). 徐元辉(Xu Y H). 钟大辛(Zhong D X). 清华大学学报(自然科学版) (Journal of Tsinghua University(Science and Technology)), 1995, 35(6): 59-63
[6] Buck R, Muir J F, Hogan R E, Skocypec R. Sol. Energy Mater., 1991, 24(1/4): 449-463
[7] Buck R, Abele M, Bauer H, Seitz A, Tamme R. J. Sol. Energy Eng., 1994, 116(2): 73-81
[8] Wrner A, Tamme R. Catal. Today, 1998, 46(2): 165-174
[9] 潘莹(Pan Y), 洪慧(Hong H), 金红光(Jin H G). 科技导报(Science & Technology Review), 2010, 28(7): 110-115
[10] 桑丽霞(Sang L X), 刘晓倩(Liu X Q), 黄莹(Huang Y), 李艳霞(Li Y X), 吴玉庭(Wu Y T), 马重芳(Ma C F). 天然气化工(Natural Gas Chemical Industry). 2009, 34(3): 67-71
[11] Rostrup-Nielsen J R, Bak Hansen J H. J. Catal., 1993, 144(1): 38-49
[12] Qin D, Lapszewicz J. Catal. Today, 1994, 21(2/3): 551-560
[13] 徐占林(Xu Z L), 毕颖丽(Bi Y L), 甄开吉(Zhen K J). 化学进展(Progess in Chemistry), 2000, 12(2): 121-130
[14] 许峥(Xu Z), 李玉敏(Li Y M), 张继炎(Zhang J Y), 张鎏(Zhang L), 韩森(Han S), 何菲(He F). 催化学报(Chinese Journal of Catalysis), 1997, 18(5): 410-413
[15] 江琦(Jiang Q), 邓国才(Deng G C), 陈荣悌(Chen R T), 黄仲涛(Huang Z T). 催化学报(Chinese Journal of Catalysis), 1997, 18(1): 5-8
[16] 路勇(Lu Y), 邓存(Deng C), 丁雪加(Ding X J ), 沈师孔(Shen S K). 催化学报(Chinese Journal of Catalysis), 1995, 16(6): 447-452
[17] 张美丽(Zhang M L), 季生福(Ji S F), 胡林华(Hu L H), 银凤翔(Yin F X), 李成岳(Li C Y), 刘辉(Liu H). 催化学报(Chinese Journal of Catalysis), 2006, 27(9): 777-782
[18] Steinfeld A. Solar Energy, 2005, 78(5): 603-615
[19] Anikeev V I, Bobrin A S, Ortner J, Schmidtb S, Funkenb K H, Kuzina N A. Solar Energy, 1998, 63(2): 97-104
[20] Kodama T, Moriyama T, Shimoyama T, Gokon N. J. Sol. Energy Eng., 2006, 118(4): 318-325
[21] Kodama T, Kiyama A, Moriyama T, Yokoyama T, Shimizu K I, Andou H, Satou N. Energy Fuels, 2003, 17(4): 914-921
[22] Gokon N, Yamawaki Y, Nakazawa D, Kodama T. Int. J. Hydrogen Energy, 2010, 35(14): 7441-7453
[23] Kodama T, Kiyama A, Shimizu K I. Energy Fuels, 2003, 17(1): 13-17
[24] Kodama T, Kiyama A, Moriyama T, Mizuno O. J. Sol. Energy Eng., 2004, 126(2): 808-811
[25] Gokon N, Osawa Y, Nakazawa D, Kodama T. Int. J. Hydrogen Energy, 2009, 34(4): 1787-1800
[26] Gokon N, Yamawaki Y, Nakazawa D, Kodama T. Int. J. Hydrogen Energy, 2011, 36(1): 203-215
[27] Gokon N, Murayama H, Nakazawa D, Nagasaki A. Solar Energy, 2009, 83(4): 527-537
[28] Gokon N, Kodama T, Imaizumi N, Umeda J, Seo T. Int. J. Hydrogen Energy, 2011, 36(3): 2014-2028
[29] Forni L. Catal. Today, 1999, 52: 147-152
[30] Kodama T, Ohtake H, Shimizu K I, Kitayama Y. Energy Fuels, 2002, 16(5): 1016-1023
[31] Pestryakov A N, Yurchenko E N, Feofilov A E. Catal. Today, 1996, 29(1): 67-70
[32] Pestryakov A N, Lunin V V, Devochkin A N, Petrov L A, Bogdanchikova N E, Petranovskii V P. Appl. Catal. A, 2002, 227(1/2): 125-130
[33] Sirijaruphan A, Goodwin J G, Rice J R W, Wei D G, Butcher K R, Roberts G W, Spivey J J. Appl. Catal. A, 2005, 281(1): 1-9
[34] Zhao C Y, Lu T J, Hodson H P. Int. J. Heat Mass Transfer, 2005, 48(12): 2452-2463
[35] Lu T J, Stone H A, Ashby M F. Acta Mater., 1998, 46(10): 3619-3635
[36] 杨立英(Yang L Y), 李成岳(Li C Y), 刘辉(Liu H). 催化学报(Chinese Journal of Catalysis), 2004, 25(4): 283-288
[37] 吴晓东(Wu X D), 翁端(Weng D), 陈震(Chen Z), 徐鲁华(Xu L H), 李恒德(Li H D). 清华大学学报(自然科学版) (Journal of Tsinghua University(Science and Technology)), 2002, 42(10): 1293-1296
[38] 王新昕(Wang X X), 郏景省(Jia J S), 穆昕(Mu X), 潘立卫(Pan L W), 王树东(Wang S D). 催化学报(Chinese Journal of Catalysis), 2008, 29(2): 99-101
[39] 胡海(Hu H), 肖文浚(Xiao W J), 袁坚(Yuan J), 施建伟(Shi J W), 上官文峰(Shangguan W F). 无机材料学报(Journal of Inorganic Materials), 2007, 22(2): 363-368
[40] Haas-Santo K, Fichtner M, Schubert K. Appl. Catal., A, 2001, 220(1): 79-92
[41] Karni J, Kribus A, Rubin R., Doron P. J. Sol. Energy Eng., 1998, 120(2): 85-95
[42] Berman A, Karn R K, Epstein M. Energy Fuels, 2006, 20(2): 455-462
[43] Gokon N, Inuta S, Yamashita S. Int. J. Hydrogen Energy, 2009, 34(17): 7143-7154

[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Xiaoguang Li, Xianglong Pang. Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations [J]. Progress in Chemistry, 2022, 34(8): 1760-1771.
[3] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[4] Yi Zeng, Yongsheng Ren, Wenhui Ma, Hui Chen, Shu Zhan, Jing Cao. Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method [J]. Progress in Chemistry, 2022, 34(4): 926-949.
[5] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[6] Di Pan, Peng Liu, Hongbin Zhang, Yi Tang. Continuous Flow Synthesis of Zeolites [J]. Progress in Chemistry, 2020, 32(7): 873-881.
[7] Hua Guo, Lei Zhang, Xu Dong, Gangyi Shen, Junfa Yin. Immobilized Multi-Enzyme Cascade Reactor [J]. Progress in Chemistry, 2020, 32(4): 392-405.
[8] Xingxing Guo, Hang Gao, Lifeng Yin, Siyu Wang, Yunrong Dai, Chuanping Feng. Photo-Thermal Conversion Materials and Their Application in Desalination [J]. Progress in Chemistry, 2019, 31(4): 580-596.
[9] Ningning Cao, Songtao Lu, Rui Yao, Huimin Li, Wei Qin, Xiaohong Wu. Solar Spectrum Selective Absorbing Coatings [J]. Progress in Chemistry, 2019, 31(4): 597-612.
[10] Yajing Chen, Xubing Li, Chenho Tung, Lizhu Wu. Artificial Photosynthesis for Hydrogen Production [J]. Progress in Chemistry, 2019, 31(1): 38-49.
[11] Wanru Zhao, Xin Hu, Ning Zhu, Zheng Fang, Kai Guo. Ionic Polymerizations in Continuous Flow [J]. Progress in Chemistry, 2018, 30(9): 1330-1340.
[12] Hongtao Yu, Shuo Chen, Xie Quan*, Zhenhua Zhang. The Mechanism, Materials and Reactors of Photocatalytic Disinfection in Water and Wastewater Treatment [J]. Progress in Chemistry, 2017, 29(9): 1030-1041.
[13] Gong Wanjun, Zhao Zhiyong, Liu Simin*. Cucurbituril-Based Supramolecular Nanoreactors/Catalysts [J]. Progress in Chemistry, 2016, 28(12): 1732-1742.
[14] Zhang Lingfeng, Hu Zhongpan, Liu Xinying, Yuan Zhongyong. Noble-Metal-Free Co-Catalysts for TiO2-Based Photocatalytic H2-Evolution Half Reaction in Water Splitting [J]. Progress in Chemistry, 2016, 28(10): 1474-1488.
[15] Xu Jianhua, Tan Linghua, Kou Bo, Hang Zusheng, Jiang Wei, Jia Yongqiang. Modification of Graphtic Carbon Nitride Photocatalyst [J]. Progress in Chemistry, 2016, 28(1): 131-148.