中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Invited Article •

Advances on Synthesis and Applications of Iptycenes and Their Derivatives

Cao Jing, Jiang Yi, Chen Chuan-Feng   

  1. Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Online: Published:
  • Contact: Chen Chuan-Feng E-mail:cchen@iccas.ac.cn
PDF ( 2313 ) Cited
Export

EndNote

Ris

BibTeX

Iptycenes and their derivatives are a class of structurally unique compounds consisting of more than three arene units fused together through a bicyclooctatriene framework. Iptycene is also extended triptycene, and it can be named after the number of arene planes separated by a bridgehead system. Pentiptycenes with five arene units are the most common members of iptycenes, and pentiptycene quinones are the most studied iptycene derivatives. Since they possess a rigid, aromatic, and three dimensional scaffold, iptycenes and their derivatives have been found more and more specific applications in supramolecular chemistry, material chemistry, molecular machines, etc. In this review, the synthesis of iptycenes, iptycene quinones and their derivatives is first highlighted, and then the recent progress in the applications of iptycene derivatives in conjugated polymeric materials, organic porous and low dielectric constant materials, chemical sensors, monolayer assemblied structures, molecular machinery, and supramolecular chemistry based on novel synthetic hosts are introduced.

Contents
1 Introduction
2 Synthesis of iptycenes and their derivatives
2.1 Synthesis of iptycenes
2.2 Synthesis of iptycene quinones
2.3 Derivatization of iptycene quinones
3 Applications of iptycenes and their derivatives
3.1 Conjugated polymeric materials
3.2 Organic porous and low dielectric constant materials
3.3 Chemical sensors
3.4 Monolayer assemblied structures
3.5 Molecular machinery
3.6 Supramolecular chemistry based on novel synthetic hosts
4 Conclusions and outlook

CLC Number: 

[1] Bartlett P D, Ryan M J, Cohen S G. J. Am. Chem. Soc., 1942, 64: 2649-2653
[2] Wittig G, Ludwig R. Angew. Chem., 1956, 68: 40-43
[3] Chen C F, Han T, Jiang Y. Chin. Sci. Bull., 2007, 52: 1349-1361
[4] Chong J H, MacLachlan M J. Chem. Soc. Rev., 2009, 38: 3301-3315
[5] Zhao L W, Li T, Wirth Z. Chem. Lett., 2010, 39: 658-667
[6] Chen C F. Chem. Commun., 2011, 1674-1688
[7] Hart H, Shamouilian S, Takehira Y. J. Org. Chem., 1981, 46: 4427-4432
[8] Yang J S, Yan J L. Chem. Commun., 2008, 1501-1512
[9] Skvarchenko V R, Shalaev V K. Dokl. Akad. Nauk SSSR Ser. Khim., 1974, 216: 110-114
[10] Hart H. Pure Appl. Chem., 1993, 65: 27-34
[11] Hart H, Bashir-Hashemi A, Luo J, Meador M A. Tetrahedron, 1986, 42: 1641-1654
[12] Hart H, Raju N, Meador M A, Ward D L. J. Org. Chem., 1983, 48: 4357-4360
[13] Bashir-Hashemi A, Hart H, Ward D L. J. Am. Chem. Soc., 1986, 108: 6675-6679
[14] Schlgl J, Krutler B. Synlett, 1999, (S1): 969-971
[15] Shahlai K, Hart H. J. Am. Chem. Soc., 1988, 110: 7136-7140
[16] Singh S B, Hart H. J. Org. Chem., 1990, 55: 3412-3415
[17] Vinod T K, Hart H. J. Am. Chem. Soc., 1990, 112: 3250-3252
[18] Vinod T K, Hart H. J. Org. Chem., 1991, 56: 5630-5640
[19] Wiehe A, Senge M O, Kurreck H. Liebigs Ann. Recl., 1997, 1951-1963
[20] Yang J S, Swager T M. J. Am. Chem. Soc., 1998, 120: 5321-5322
[21] Yang J S, Swager T M. J. Am. Chem. Soc., 1998, 120: 11864-11873
[22] Spyros S, Xanthopoulou N. Tetrahedron Lett., 2003, 44: 3767-3770
[23] Zhu X Z, Chen C F. J. Org. Chem., 2005, 70: 917-924
[24] Cao J, Lu H Y, Chen C F. Tetrahedron, 2009, 65: 8104-8112
[25] Lou K Y, Prior A M, Wiredu B, Desper J, Hua D H. J. Am. Chem. Soc., 2010, 132: 17635-17641
[26] Yang J S, Ko C W. J. Org. Chem., 2006, 71: 844-847
[27] Yang J S, Yan J L, Jin Y X, Sun W T, Yang M C. Org. Lett., 2009, 11: 1429-1432
[28] Zyryanov G, Palacios M A, Anzenbacher P. Org. Lett., 2008, 10: 3681-3684
[29] Webster O W. Polym. Prepr., 1993, 34: 98-100
[30] Yamaguchi S, Swager T M. J. Am. Chem. Soc., 2001, 123: 12087-12088
[31] Swager T M. Acc. Chem. Res., 2008, 41: 1181-1189
[32] Thomas S W, Joly G D, Swager T M. Chem. Rev., 2007, 107: 1339-1386
[33] Zahn S, Swager T M. Angew. Chem. Int. Ed., 2002, 41: 4225-4230
[34] Amara J P, Swager T M. Macromolecules, 2005, 38: 9091-9094
[35] Thomas S W, Swager T M. Adv. Mater., 2006, 18: 1047-1050
[36] Zhao D, Swager T M. Macromolecules, 2005, 38: 9377-9384
[37] Zhao D, Swager T M. Org. Lett., 2005, 7: 4357-4360
[38] Zhao X, Cardolaccia T, Farley R T, Abboud K A, Schanze K S. Inorg. Chem., 2005, 44: 2619-2627
[39] Yang J S, Liu C P, Lee G H. Tetrahedron Lett., 2001, 41: 7911-7915
[40] Long T M, Swager T M. J. Am. Chem. Soc., 2003, 125: 14113-14119
[41] Yang J S, Lin C S, Hwang C Y. Org. Lett., 2001, 3: 889-892
[42] Yang J S, Lee C C, Yau S L, Chang C C, Lee C C, Leu J M. J. Org. Chem., 2000, 65: 871-877
[43] Annunziata R, Benaglia M, Cinquini M, Raimondi L, Cozzi F. J. Phy. Org. Chem., 2004, 17: 749-751
[44] Yang J S, Huang Y T, Ho J H, Sun W T, Huang H H, Lin Y C, Huang S J, Huang S L, Lu H F, Chao I. Org. Lett., 2008, 10: 2279-2282
[45] Sun W T, Huang Y T, Huang G J, Lu H F, Chao I, Huang S L, Huang S J, Lin Y C, Ho J H, Yang J S. Chem. Eur. J., 2010, 16: 11594-11604
[46] Cao J, Jiang Y, Zhao J M, Chen C F. Chem. Comm., 2009, 1987-1989
[47] Cao J, Guo J B, Li P F, Chen C F. J. Org. Chem., 2011, 76: 1644-1652
[48] Cao J, Lu H Y, You X J, Zheng Q Y, Chen C F. Org. Lett., 2009, 11: 4446-4449
[49] Cao J, Lu H Y, Xiang J F, Chen C F. Chem. Commun., 2010, 3586-3588
[50] Cao J, Zhu X Z, Chen C F. J. Org. Chem., 2010, 75: 7420-7423

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[5] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[8] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[9] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[10] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[11] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[12] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[13] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[14] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[15] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.