中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (11): 2183-2199 Previous Articles   Next Articles

• Invited Article •

Functional Inorganic-Cellulose Hybrid Nanocomposites

Xu Yan   

  1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
  • Received: Online: Published:
PDF ( 2733 ) Cited
Export

EndNote

Ris

BibTeX

This paper provides an overview of the recent progress made in the area of functional inorganic-cellulose hybrid nanocomposites. The new advances reviewed are the use of nanocrystalline cellulose (NCC) as matrix materials to enhance the functionality of inorganic materials, as a biotemplating agent to generate nanocomposites with a hierarchical structure for improved functionality and the use of inorganic nanoparticles to generate functional inorganic-cellulose hybrid nanocomposites. An introduction into the methods used to assemble inorganic-cellulose hybrid nanocomposites is given with special attention to electrospinning method, templated mineralization via the structural feature, H-bonds network and the biosynthesis route of cellulose, sol-gel method, solution-casting method and layer-by-layer method. The types of NCC covered include those extracted from higher plants, tunicates and bacteria cellulose (BC). An introduction into NCC covering general aspects of their preparation, crystal structures and morphology, arrangement and orientation under different conditions, chemical modification and solvents is made. Lignocellulose and sea cucumber dermis are fiber nanocomposites with a hierarchical structure. Their exceptional mechanical properties and intelligence are believed to be due to a functional adaptation of the structure at all levels of hierarchy. Selected bio-inspired cellulose nanocomposites are discussed to manifest how the hierarchical and helical feature of NCC can be used in smart materials design. A comprehensive coverage of the literature is given and the author's view on where the field is likely to advance in the future is highlighted.

Contents
1 Introduction
2 Advances in inorganic-NCC hybrid nanocomposites
2.1 HAP-BC nanocomposites
2.2 Semiconductors-NCC nanocomposites
2.3 TiO2-NCC nanocomposites
2.4 Clay-NCC nanocomposites
2.5 Cellulose aerogel-based nanocomposites
3 Assembly of inorganic-NCC hybrid nancomposites
3.1 Electrospinning method
3.2 Templated mineralization
3.3 Sol-gel method
3.4 Solution casting method
3.5 Layer-by-layer method
4 NCC
4.1 Preparation
4.2 Properties
4.3 Arrangement and orientation
4.4 Chemical modification
4.5 Solvents
5 Innovation inspired by nature
5.1 Hierarchical and helical structure of cellulose
5.2 Chemoresponsive sea cucumber dermis
6 Conclusion and Outlook

CLC Number: 

[1] (a) Fratzl P, Weinkamer R. Prog. Mater. Sci., 2007, 52: 1263-1334; (b) Rubin E M. Nature, 2008, 454: 841-845
[2] French A D, Bertoniere N R, Brown R M, Chanzy H, Gray D, Hattori K, Glasser W. Kirk-Othmer Encyclopedia of Chemical Technology. 5th ed (Ed. Seidel A). New York: John Wiley & Sons Inc., 2004, 5
[3] Payen A. Compt. Rend., 1838, 7: 1052-1056
[4] Atalla R H, Brady J W, Matthews J F, Ding S Y, Himmel M E. Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy. London: Blackwell Publishing, 2008. 1-212
[5] Hon D N S, Shiraishi N. Wood and Cellulosic Chemistry. New York: Marcel Dekker Inc., 1991
[6] O'Sullivan A C. Cellulose, 1997, 4: 173-207
[7] Klemm D, Heublein B, Fink H P, Bohn A. Angew. Chem. Int. Ed., 2005, 44: 3358-3393
[8] Bledzki A K, Gassan J. Prog. Polym. Sci., 1999, 24: 221-274
[9] Favier V, Chanzy H, Cavaille J Y. Macromolecules, 1995, 28: 6365-6367
[10] Hubbe M A, Rojas O J, Lucia L A, Sain M. BioResources, 2008, 3(3): 929-980
[11] Siró I, Plackett D. Cellulose, 2010, 17: 459-494
[12] Habibi Y, Lucia L A, Rojas O J. Chem. Rev., 2010, 110: 3479-3500
[13] Eichhorn S J, Dufresne A, Aranguren M, Marcovich N E, Capadona J R, Rowan S J, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A N, Mangalam A, Simonsen J, Benight A S, Bismarck A, Berglund L A, Peijs T. J. Mater. Sci., 2010, 45: 1-33
[14] Fengel D, Wegener G. Wood: Chemistry, Ultrastructure, Reactions. Berlin: de Gruyter, 1989.437-466
[15] Fratzl P. Curr. Opin. Colloid. Interface Sci., 2003, 8: 32-39
[16] Lichtenegger H, Reiterer A, Tschegg S E, Müller M, Riekel C, Paris O, Fratzl P. Microfibril Angle Determined by X-Ray Scattering and the Correlation with The Mechanical Properties of Wood (Eds. Spatz HC, Speck T, Thieme G). Stuttgart: Plant Biomechanics, 2000
[17] Richmond P A. Occurrence and Functions of Native Cellulose (Eds. Haigler C H, Weimer P J). Biosynthesis and Biodegradation of Cellulose. New York: Marcel Dekker Inc., 1991. 5-23
[18] Rnby B G. Arkiv. Kemi., 1952, 4: 241-248
[19] Hirose E, Kimura S, Itoh T, Nishikawa J. Biol. Bull., 1999, 196: 113-120
[20] Kimura S, Ohshima C, Hirose E, Nishikawa J. Itoh T. Protoplasma, 2001, 216: 71-74
[21] Vandamme E J, De Baets S. Vanbaelen A, Joris K, de Wulf P. Polym. Degrad. Stab., 1998, 59: 93-99
[22] Hestrin S, Schramm M. Biochem. J., 1954, 58: 345-352
[23] Ross P, Mayer R, Benziman M. Microbio. Rev., 1991, 55(1): 35-38
[24] De Wulf P, Joris K, Vandamme E J. J. Chem. Technol. Biotechnol., 1996, 67: 376-380
[25] Cannon R E, Anderson S M. Crit. Rev. Microbiol., 1991, 17(6): 435-447
[26] Bungay H R, Serafica G, Mormino R. Environmental Implications of Microbial Cellulose (Ed. Wise D L). Global Environmental Biotechnology. Amsterdam: Elsevier, 1997.691-700
[27] Hestrin S. Meth. Carbohydr. Chem., 1963, 3: 4-9
[28] Yoshinaga F, Tonouchi N, Watanabe K. Biosci. Biotechnol. Biochem., 1997, 61(2): 219-224
[29] Williams W S, Cannon R E. Appl. Environ. Microbiol., 1989, 55(10): 2448-2452
[30] Klemm D, Schumann D, Udhardt U, Marsch S. Prog. Polym. Sci., 2001, 26: 1561-1603
[31] Czaja W K, Young D J, Kawecki M, Brown. R M. Biomacromolecules, 2007, 8(1): 1-12
[32] Iguchi M, Yamanaka S, Budhiono A. J. Mater. Sci., 2000, 35: 261-270
[33] Fontana J D, de Souza A M, Fontana C K, Torriani I L, Moreschi J C, Gallotti B J, De Souza S J, Narcisco G P, Bichara J A, Farah L F X. Appl. Biochem. Biotechnol., 1990, 24/25(1): 253-264
[34] White L A. J. Appl. Polym. Sci., 2004, 92: 2125-2131
[35] Hou A Q, Shi Y Q, Yu Y H. Carbohydr. Polym., 2009, 77: 201-205
[36] Cunha A G, Freire C S R, Silvestre A J D, Neto C P, Gandini A. Carbohydr. Polym., 2010, 80: 1048-1056
[37] Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S. J. Mater. Sci., 2006, 41: 5646-5656
[38] Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T. Cellulose, 2008, 15: 111-120
[39] Sun N, Swatloski R P, Maxim M L, Rahman M, Harland A G, Haque A, Spear S K, Daly D T, Rogers R D. J. Mater. Chem., 2008, 18: 283-290
[40] Klemm D, Heublein B, Fink H P, Bohn A. Angew. Chem. Int. Ed., 2005, 44(22): 3358-3393
[41] Putra A, Kakugo A, Furukawa H, Gong J P, Osada Y. Polymer, 2008, 49(7): 1885-1891
[42] Czaja W, Krystynowicz A, Bielecki S, Brown Jr R M. Biomaterials, 2006, 27(2): 145-151
[43] Fontana J D, de Sousa A M, Fontana C K, Torriani I L, Moreschi J C, Gallotti B J, de Sousa S J, Narcisco G P, Bichara J A, Farah L F. Appl. Biochem. Biotechnol., 1990, 24/25: 253-264
[44] Brown R M. Emerging Technologies and Future Prospects for Industrialization of Microbially Derived Cellulose (Eds. Ladisch M R, Bose A). ACS Conference Proceedings Series--Harnessing Biotechnology for the 21st Century. Columbus, Ohio: American Chemical Society, 1992. 76-70
[45] Fontana J D, Joerke C G, Baron M, Marascin M, Ferreira A G, Torriani I. Appl. Biochem. Biotechnol., 1997, 63/65: 327-338
[46] Alvarez O, Patel M, Booker J, Markowitz L. Wounds: A Compendium of Clinical Research and Practice, 2004, 16: 224-233
[47] Czaja W, Krystynowicz A, Kawecki M, Wysota K, Sakiel S, Wróblewski P, Glik J, Nowak P, Bielecki S. In Cellulose: Molecular and Structural Biology (Eds. Brown R M, Saxena I M). The Netherlands: Springer Dordrecht, 2007
[48] Kawecki M, Krystynowicz A, Wysota K, Czaja W, Sakiel S, Wróblewski P, Glik J, Bielecki S. Bacterial Cellulose-Biosynthesis, Properties and Applications. Vienna, Austria: the International Review Conference Biotechnology, November 14-18, 2004
[49] Wan Y Z, Hong L, Jia S R, Huang Y, Zhu Y, Wang Y L, Jiang H J. Compos. Sci. Technol., 2006, 66: 1825-1832
[50] Wan Y Z, Huang Y, Yuan C D, Raman S, Zhu Y, Jiang H J, He F, Gao C. Mater. Sci. Eng., 2007, C27: 855-864
[51] Gao C, Xiong G Y, Luo H L, Ren K J, Huang Y, Wan Y Z. Cellulose, 2010, 17: 365-373
[52] Grande C J, Torres F G, Gomez C, Carmen B M. Acta Biomaterialia, 2009, 5: 1605-1615
[53] Khripunov A K, Baklagina Y G, Sinyaev V A, Shustikova E S, Paramanov B A, Romanov D P, Smyslov R Y, Tkachenko A A. Glass Phys. Chem., 2008, 34(2): 192-200
[54] Abitbol T, Gray D G. Cellulose, 2009, 16: 319-326
[55] Abitbol T, Wilson J T, Gray D G. J. Appl. Polym. Sci., 2011, 119: 803-810
[56] Ruan D, Huang Q L, Zhang L N. Macromol. Mater. Eng., 2005, 290: 1017-1024
[57] Li X, Chen S Y, Hu W L, Shi S K, Shen W, Zhang X, Wang H P. Carbohydr. Polym., 2009, 76: 509-512
[58] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Chem. Rev., 1995, 95: 69-96
[59] Suzuki M, Ito T, Taga Y. Appl. Phys. Lett., 2001, 78: 3968-3970
[60] Kim S, Fisher B, Eisler H J, Bawendi M. J. Am. Chem. Soc., 2003, 125: 11466-11467
[61] Marci G, Augugliaro V, Lopez-Munoz M J, Martin C, Palmisano L, Rives V, Schiavello M, Tilley R J D, Venezia A M. J. Phys. Chem., 2001, B105: 1026-1033
[62] Wang Z S, Huang C H, Huang Y Y, Hou Y J, Xie P H, Zhang B W, Cheng H M. Chem. Mater., 2001, 13: 678-682
[63] Bashouti M, Salalha W, Brumer M, Zussman E, Lifshitz E. Chem. Phys. Chem., 2006, 7: 102-106
[64] Kim T W, Hwang S J, Park Y, Choi W, Choy J H. J. Phys. Chem., 2007, C111: 1658-1644
[65] Zhou J P, Liu S L, Qi J N, Zhang L N. J. Appl. Polym. Sci., 2006, 101: 3600-3608
[66] 王勇(Wang Y), 张昊(Zhang H), 张军(Zhang J), 杨青林(Yang Q L), 郭林(Guo L). 复合材料学报(Acta. Mater. Compos. Sinica), 2007, 24(3): 35-29
[67] Bedford N M, Steckl A J. ACS Appl. Mater. Interfaces, 2010, 2(8): 2448-2455
[68] Liu R L, Ye H Y, Xiong X P, Liu H Q. Mater. Chem. Phys., 2010, 121: 432-439
[69] Edgar K J, Buchanan C M, Debenham J S, Rundquist P A, Seiler B D, Shelton M C, Tindall D. Prog. Polym. Sci., 2001, 26: 1605-1688
[70] Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T, Kamigaito O. Material Research Society Proceeding, 1990, 171: 45-50
[71] Cerruti P, Ambrogi V, Postiglione A, Rychly J, Matisová-Rychlá L, Carfagna C. Biomacromolecules, 2008, 9(11): 3004-3013
[72] Romero R B, Leite C A P, Gonalves M D C. Polymer, 2009, 50: 161-170
[73] Delhom C D, White-Ghoorahoo L A, Pang S S. Composites, 2010, B41: 475-481
[74] Kistler S S. Nature, 1931, 127: 741-741
[75] Kistler S S. J. Phys. Chem., 1932, 36: 52-64
[76] Liebner F, Haimer E, Potthast A, Loidl D, Tschegg S, Neouze M A, Wendland M, Rosenau T. Holzforschung, 2009, 63: 3-11
[77] Pierre C, Pajonk G M. Chem. Rev., 2002, 102: 4243-4265
[78] Capadona J R, van den Berg O, Capadona L A, Schroeter M, Rowan S J, Tyler D J, Weder C. Nature Nanotechnol., 2007, 2: 765-769
[79] Sehaqui H, Salajková M, Zhou Q, Berglund L A. Soft Matter, 2010, 6: 1824-1832
[80] Gawryla M D, van den Berg O, Weder C, Schiraldi D A. J. Mater. Chem., 2009, 19: 2118-2124
[81] Olsson R T, Azizi Samir M A S, Salazar-Alvarez G, Belova L, Strm V, Berglund L A, Ikkala O, Nogués J, Gedde U W. Nature Nanotechnol., 2010, 5: 584-588
[82] Reneker D H, Chun I. Nanotechnology, 1996, 7: 216-223
[83] Li D, Xia Y. Adv. Mater., 2004, 16: 1151-1170
[84] Greiner A, Wendorff J H. Nanotechnology, 2007, 46: 5670-5703
[85] Kwon O H, Lee I S, Ko Y G, Meng W, Jung K H, Kang I K, Ito Y. Biomed. Mater., 2007, 2: S52-S58
[86] Lee Y H, Lee J H, An I G, Kim C, Lee D S, Lee Y K, Nam J D. Biomaterials, 2005, 26: 3165-3172
[87] Pham Q P, Sharma U, Mikos A G. Tissue Eng., 2006, 12: 1197-1211
[88] Schlecht S, Tan S, Yosef M, Dersch R, Wendorff J H, Jia Z, Schaper A. Chem. Mater., 2005, 17: 809-814
[89] Kowalczyk T, Nowicka A, Elbaum D, Kowalewski T A. Biomacromolecules, 2008, 9: 2087-2090
[90] Lu P, Hsieh Y L. ACS Appl. Mater. & Interfaces, 2010, 2(8): 2413-2420
[91] Shukla S, Brinley E, Cho H J, Seal S. Polymer, 2005, 46: 12130-12145
[92] Ma Z W, Kotaki M, Ramakrishna S. J. Membrane Science, 2005, 265: 115-123
[93] Litschauer M, Neouze M A, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F. Cellulose, 2011, 18: 143-149
[94] Jin H, Kettunen M, Laiho A, Pynnnen H, Paltakari J, Marmur A, Ikkala O, Ras R H A. Langmuir, 2011, 27(5): 1930-1934
[95] Aulin C, Netrval J, Wgberg L, Lindstrm T. Soft Matter, 2010, 6: 3298-3305
[96] Kettunen M, Silvennoinen R J, Houbenov N, Nyknen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindstrm T, Ritala M, Ras R H A, Ikkala O. Adv. Funct. Mater., 2011, 21: 510-517
[97] Brown A J. J. Chem. Soc., 1886, 49: 172-186
[98] Brown A J. J. Chem. Soc. Trans., 1886, 49: 432-439
[99] Jonas R, Farah L F, Polym. Degrad. Stab., 1998, 59: 101-106
[100] Samon S, Hudson S M. Macromol. Chem. Phys., 1997, C37: 199-276
[101] Barud H S, Assunǎo R M N, Martines M A U, Dexpert-Ghys J, Marques R F C, Messaddeq Y, Ribeiro S J L. J. Sol-Gel Sci. Technol., 2008, 46: 363-367
[102] Perotti G F, Barud H S, Messaddeq Y, Ribeiro S J L, Constantino V R L. Polymer, 2011, 52: 157-163
[103] Zollfrank C, Scheel H, Greil P. Adv. Mater., 2007, 19: 984-987
[104] Zhang D, Qi L. Chem. Commun., 2005, 2735-2737
[105] Ma Y. Adv. Funct. Mater., 2010, 20: 1152-1160
[106] Pinto R J B, Marques P A A P, Barros-Timmons A M, Trindade T, Neto C P. Compos. Sci. Technol., 2008, 68: 1088-1093
[107] Brown R M J. J. Macromol. Sci. Part A, Pure Appl. Chem., 1996, A33: 1345-1373
[108] Rowland S P, Roberts E J. J. Polym. Sci. Part A: Polym. Chem., 1972, 10: 2447-2461
[109] Revol J F, Bradford H, Giasson J, Marchessault R H, Gray D G. Int. J. Biol. Macromol., 1992, 14: 170-172
[110] Battista O A, Coppick S, Howsmon J A, Morehead F F, Sisson W A. Ind. Eng. Chem., 1956, 48: 333-335
[111] Battista O A. Ind. Eng. Chem., 1950, 42: 502-507
[112] Nishiyama Y, Kim U J, Kim D Y, Katsumata K S, May R P, Langan P. Biomacromolecules, 2003, 4: 1013-1017
[113] Kai A. Sen-i Gakkaishi, 1976, 32: T326-T334
[114] Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J L, Heux L, Dubreuil F, Rochas C. Biomacromolecules, 2008, 9: 57-65
[115] Araki J, Wada M, Kuga S, Okano T. J. Wood Sci., 1999, 45: 258-261
[116] Revol J F, Bradford H, Giasson J, Marchessault R H, Gray D G. Int. J. Biol. Macromol., 1992, 14: 170-172
[117] Roman M, Winter W T. Biomacromolecules, 2004, 5: 1671-1677
[118] Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F. Langmuir, 2005, 21: 2034-2037
[119] (a) Atalla R H. Struct., Funct., Biosynth. Plant Cell Walls, Proc. Annu. Symp. Bot., 7th. 1984, 381; (b) Sarko A. Recent X-Ray Crystallographic Studies of Celluloses. In: Cellulose: Structure, Modification and Hydrolysis (Eds. Young R A, Rowell R M). New York: Wiley-Interscience, 1986. 29-49
[120] Atalla R H, VanderHart D L. Science, 1984, 223: 283-285
[121] Nishiyama Y, Sugiyama J, Chanzy H, Langan P. J. Am. Chem. Soc., 2003, 125: 14300-14306
[122] Nishiyama Y, Chanzy H, Langan P. J. Am. Chem. Soc., 2002, 124: 9074-9082
[123] Helbert W, Sugiyama J, Ishihara M, Yamanaka S. J. Biotechnol., 1997, 57: 29-37
[124] Langan P, Nishiyama Y, Chanzy H. J. Am. Chem. Soc., 1999, 121: 9940-9946
[125] Mann J, Marrinan H J. Chem. Ind., 1953, 1092-1093
[126] Gardiner E S, Sarko A. Can. J. Chem., 1985, 63: 173-180
[127] Wada M, Chanzy H, Nishiyama Y, Langan P. Macromolecules, 2004, 37: 8548-8555
[128] Wada M, Heux L, Nishiyama Y, Langan P. Biomacromolecules, 2009, 10: 302-309
[129] Ashby M F, Jones D R H. Engineering Materials 1: An Introduction to Their Properties and Applications. Oxford: Pergamon Press, 1989
[130] Nishino T, Takano K, Nakamae K. J. Polym. Sci., 1995, B33: 1647-1651
[131] Sakurada I, Nukushina Y, Ito T. J. Polym. Sci., 1962, 57: 651-660
[132] Orts W J, Godbout L, Marchessault R H, Revol J F. Macromolecules, 1998, 31: 5717-5725
[133] Revol J F, Marchessault R H. Int. J. Biol. Macromol., 1993, 15: 329-335
[134] Dong X M, Kimura T, Revol J F, Gray D G. Langmuir, 1996, 12: 2076-2082
[135] Dong X M, Gray D G. Langmuir, 1997, 13: 2404-2409
[136] Araki J, Wada M, Kuga S, Okano T. Langmuir, 2000, 16: 2413-2415
[137] Heux L, Chauve G, Bonini C. Langmuir, 2000, 16: 8210-8212
[138] Elazzouzi-Hafraoui S, Putaux J L, Heux L. J. Phys. Chem., 2009, B113: 11069-11075
[139] Elazzouzi. Doctoral Dissertation of Joseph Fourier University, Grenoble, France, 2006
[140] Zhou Q, Brumer H, Teeri T T. Macromolecules, 2009, 42: 5430-5432
[141] Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F. Langmuir, 2005, 21: 2034-2037
[142] Kvien I, Oksman K. Appl. Phys. A: Mater. Sci. Process, 2007, 87: 641-643
[143] Revol J F, Godbout J D L, Gray D G. WO 95/21901, 1995
[144] Revol J F, Godbout L, Gray D G. J. Pulp Pap. Sci., 1998, 24: 146-149
[145] 谈琚琚(Tan J J), 关明云(Guan M Y), 孙益民(Sun Y M), 叶信宇(Ye X Y), 马芝森(Ma Z S). 合成化学(Chinese Journal of Synthetic Chemistry), 2005, 13(1): 61-63
[146] De Nooy A E J, Besemer A C, van Bekkum H. Recl. Trav. Chim. Pays-Bas, 1994, 113: 165-166
[147] Ott E. Cellulose and Cellulose Derivatives. New York: Wiley-Interscience Press, 1971
[148] Kim C, Frey M W, Marquez M, Joo Y L. J. Polym. Sci. Part B Polym. Phys., 2005, 43: 1673-1683
[149] Kulpinski P. J. Appl. Polym. Sci., 2005, 98: 1855-1859
[150] Frenot A, Henriksson M W, Walkenstrom P. J. Appl. Polym. Sci., 2007, 103: 1473-1482
[151] Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan P M, Linhardt R J. Biomacromolecules, 2006, 7: 415-418
[152] Kim C, Kim D, Kang S, Marquez M, Joo Y L. Polymer, 2006, 47: 5097-5107
[153] Zhang L, Zhou J. ZL 00114486.3, 2003
[154] Zhang L, Ruan D, Gao S. ZL. 00128162.3, 2003
[155] (a) Lichtenegger H, Muller M, Paris O, Riekel C, Fratzl P. J. Appl. Crystallogr., 1999, 32: 1127-1133; (b) Fahlen J, Salmen L. Plant Biol., 2002, 4: 339-345; (c) Jakob H F, Fratzl P, Tschegg S E. J. Struct. Biol., 1994, 113: 13-22; (d) Keckes J, Burgert I, Fruhmann K, Muller M, Kolln K, Hamilton M, Burghammer M, Roth S V, Stanzl-Tschegg S E, Fratzl P. Nat. Mater., 2003, 2: 810-814
[156] Pommet M, Juntaro J, Heng J Y Y, Mantalaris A, Lee A F, Wilson K, Kalinka G, Shaffer M S P, Bismarck A. Biomacromolecules, 2008, 9: 1643-1651
[157] Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer M S P, Bismarck A. Adv. Mater., 2008, 20: 3122-3126
[158] Heng J Y Y, Pearse D F, Thielmann F, Lampke T, Bismarck A. Compos. Interfaces, 2007, 14: 581-604
[159] Shopsowitz K E, Qi H, Hamad W Y, MacLachlan M J. Nature, 2010, 468: 422-426
[160] Heinzeller T, Nebelsick J. Taphonomy of Echinoderms: Introduction and Outlook (Ed. Echinoderms). London: Taylor & Francis, 2004
[161] Motokawa T. Comp. Biochem. Physiol., 1994, B109: 613-622
[162] Thurmond F A, Trotter J A. J. Exp. Biol., 1996, 199: 1817-1828
[163] Wilkie I C. J. Exp. Biol., 2002, 205: 159-165
[164] Trotter J A, Koob T J. Matrix Biol., 1999, 18: 569-578
[165] Szulgit G K, Shadwick R E. J. Exp. Biol., 2000, 203: 1539-1550

[1] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[2] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[3] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[4] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[5] Bao Li, Lixin Wu. Liquid Condensed Matter Mediated Assembly and Functionality of Dispersoid [J]. Progress in Chemistry, 2022, 34(7): 1600-1609.
[6] Mingjun Nan, Lin Qiao, Yuqin Liu, Huamin Zhang, Xiangkun Ma. A Review of Inorganic Aqueous Flow Battery [J]. Progress in Chemistry, 2022, 34(6): 1402-1413.
[7] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[8] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[9] Fanyong Yan, Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu. The Fluorescent Probe for Detecting Glutathione [J]. Progress in Chemistry, 2022, 34(5): 1136-1152.
[10] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[11] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[12] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[13] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[14] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[15] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.