中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (10): 2169-2176 Previous Articles   

• Review •

Lipid Biosynthesis and Metabolic Regulation in Microalgae

Zhu Shunni1, Wang Zhongming1, Shang Changhua1, Zhou Weizheng1,2, Yang Kang1, Yuan Zhenhong1*   

  1. 1. Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
  • Received: Revised: Online: Published:
PDF ( 2998 ) Cited
Export

EndNote

Ris

BibTeX

With the increasingly severe energy and environmental problems, biodiesel from microalgae has become a hot topic. Compared with traditional oil crops, microalgae have advantages of rapid growth, high lipid content, non-occupation of arable land, etc., which have been considered as a highly potential feedstock of biofuels. Although neutral lipids, especially triacylglycerols (TAG) which are the main feedstock of biodiesel production, can be accumulated in many algal cells under stress conditions, little is known about microalgal lipid synthesis and metabolic regulation so far. In order to better understand and manipulate microalgal lipid metabolism for improvement of lipid production, we present an overview of advances of lipid biosynthesis and metabolic regulation in microalgae, including TAG biosynthesis pathway, biochemical regulation and genetic engineering strategies. Effects of nutrition on lipid production are represented. Five genetic engineering strategies are summarized including enhancement of fatty acids synthesis pathway, enhancement of Kennedy pathway, regulation of alternative pathway of TAG, inhibition of competing pathway of lipid biosynthesis and lipid catabolism. The prospects of research on microalgal lipid metabolism are also discussed.

Contents
1 Introduction
2 TAG biosynthesis pathways
2.1 Fatty acids synthesis pathway
2.2 Kennedy pathway
3 Biochemical regulation of lipid accumulation
4 Genetic engineering strategies of lipid accumulation
4.1 Enhancement of fatty acids synthesis pathway
4.2 Enhancement of Kennedy pathway
4.3 Regulation of alternative pathway of TAG
4.4 Inhibition of competing pathway of lipid biosynthesis
4.5 Inhibition of lipid catabolism
5 Conclusion and prospects

CLC Number: 

[1] Williams P J L, Laurens L M L. Energy Environ. Sci., 2010, 3(5): 554-590
[2] 童牧(Tong M), 周志刚(Zhou Z G). 农业工程技术: 新能源产业(Agricultural Engineering Technology: New Energy Industry), 2009, (5):19-26
[3] Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A, Plant J., 2008, 54(4): 621-639
[4] Verma N, Mehrotra S, Shukla A, Mishra B. Afr. J. Biotechnol., 2010, 9(10): 1402-1411
[5] Chisti Y. Biotechnol. Adv., 2007, 25(3): 294-306
[6] Radakovits R, Jinkerson R E, Darzins A, Posewitz M C. Eukaryot. Cell, 2010, 9(4): 486-501
[7] Courchesne N M D, Parisien A, Wang B, Lan C Q. J. Biotechnol., 2009, 141(1/2): 31-41
[8] Greenwell H C, Laurens L M L, Shields R J, Lovitt R W, Flynn K J. J. R. Soc. Interface, 2010, 7(46): 703-726
[9] Murphy D J. Prog. Lipid Res., 2001, 40(5): 325-438
[10] 夏晗(Xia H), 王兴军(Wang X J), 李孟军(Li M J), 肖寒(Xiao H). 生物工程学报(Chin. J. Biotech.), 2010, 26(6): 735-743
[11] Illman A M, Scragg A H, Shales S W. Enzyme Microb. Tech., 2000, 27(8): 631-635
[12] Kawata M, Nanba M, Matsukawa R, Chihara M, Karube I. Stud. Surf. Sci. Catal., 1998, 114: 637-640
[13] Tornabene T G, Holzer G, Lien S, Burris N. Enzyme Microb. Tech., 1983, 5(6): 435-440
[14] Li Y, Horsman M, Wang B, Wu N, Lan C Q. Appl. Microbiol. Biotechnol., 2008, 81(4): 629-636
[15] Khozin-Goldberg I, Cohen Z. Phytochemistry, 2006, 67(7): 696-701
[16] Roessler P G. Arch. Biochem. Biophys., 1988, 267(2): 521-528
[17] Liu Z Y, Wang G C, Zhou B C. Bioresource Technol., 2008, 99(11): 4717-4722
[18] Takagi M, Yoshida T. J. Biosci. Bioeng., 2006, 101(3): 223-226
[19] 姚茹(Yao R), 程丽华(Cheng L H), 徐新华(Xu X H), 张林(Zhang L), 陈欢林(Chen H L). 化学进展(Progress in Chemistry), 2010, 22(6): 1221-1232
[20] Wang B, Li Y, Wu N, Lan C. Appl. Microbiol. Biotechnol., 2008, 79(5): 707-718
[21] Scragg A H, Illman A M, Carden A, Shales S W. Biomass Bioenergy, 2002, 23(1): 67-73
[22] Rodolfi L, Zittelli G C, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M R. Biotechnol. Bioeng., 2009, 102(1): 100-112
[23] Roessler P G. Plant Physiol., 1990, 92: 73-78
[24] Dunahay T, Jarvis E, Dais S, Roessler P. Appl. Biochem. Biotech., 1996, 57/58(1): 223-231
[25] Sheehan J, Dunahay T, Benemann J, Roessler P. A Look Back at the US Department of Energy's Aquatic Species Program: Biodiesel from Algae. NREL/TP-580-24190, 1998. 67-139
[26] Verwoert I I G S, Linden K H, Walsh M C, Nijkamp H J J, Stuitje A R. Plant Mol. Biol., 1995, 27(5): 875-886
[27] Dehesh K, Tai H, Edwards P, Byrne J, Jaworski J G. Plant Physiol., 2001, 125(2): 1103-1114
[28] Vigeolas H, Waldeck P, Zank T, Geigenberger P. Plant Biotechnol. J., 2007, 5(3): 431-441
[29] Jain R K, Coffey M, Lai K, Kumar A, MacKenzie S L. Biochem. Soc. T., 2000, 28: 958-961
[30] Taylor D C, Katavic V, Zou J T, MacKenzie S L, Keller W A, An J, Friesen W, Barton D L, Pedersen K K, Giblin E M, Ge Y, Dauk M, Sonntag C, Luciw T, Males D. Mol. Breeding, 2002, 8(4): 317-322
[31] Maisonneuve S, Bessoule J J, Lessire R, Delseny M, Roscoe T J. Plant Physiol., 2010, 152(2): 670-684
[32] Lardizabal K, Effertz R, Levering C, Mai J, Pedroso M C, Jury T, Aasen E, Gruys K, Bennett K. Plant Physiol., 2008, 148(1): 89-96
[33] Zheng P, Allen W B, Roesler K, Williams M E, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski M C, Shen B. Nat. Genet., 2008, 40(3): 367-372
[34] Snyder C L, Yurchenko O P, Siloto R M P, Chen X, Liu Q, Mietkiewska E, Weselake R J. New Biotechnol., 2009, 26(1/2): 11-16
[35] Xu J Y, Zheng Z F, Zou J T. Botany., 2009, 87(6): 544-551
[36] Zou J, Xu J, Zheng Z. WO/2009/085169, 2009
[37] Wagner M, Hoppe K, Czabany T, Heilmann M, Daum G, Feussner I, Fulda M. Plant Physiol. Biochem., 2010, 48(6): 407-416
[38] Khozin-Goldberg I, Cohen Z. Biochimie. 2011, 93(1): 91-100
[39] Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H. Appl. Environ. Microbiol., 2008, 74(9): 2573-2582
[40] Dahlqvist A, Sthl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S. P. Natl. Acad. Sci. USA, 2000, 97(12): 6487-6492
[41] Paul-André S, Norio M. Lipids in Photosynthesis: Structure, Function and Genetics (Advances in Photosynthesis and Respiration). Springer Netherlands, 2004. 53-64
[42] Cho S H, Thompson G A. Biochim. Biophys. Acta. Lipids Lipid Metabol., 1986, 878(3): 353-359
[43] Roessler P G. J. Phycol., 1988, 24(3): 394-400
[44] Ball S G, Morell M K. Annu. Rev. Plant Biol., 2003, 54: 207-233
[45] Ruuska S, Girke T, Benning C, Ohlrogge J. Plant Cell, 2002, 14(6): 1191-1206
[46] Vigeolas H, Mohlmann T, Martini N, Neuhaus H, Geigenberger P. Plant Physiol., 2004, 136(1): 2676-2686
[47] Wang Z T, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. Eukaryot. Cell, 2009, 8(12): 1856-1868
[48] Li Y T, Han D X, Hu G R, Sommerfeld M, Hu Q. Biotechnol. Bioeng., 2010, 107(2): 258-268
[49] Li Y T, Han D X, Hu G R, Dauvillee D, Sommerfeld M, Ball S, Hu Q. Metab Eng., 2010, 12(4): 387-391
[50] Zabawinski C, van Den Koornhuyse N, D'Hulst C, Schlichting R, Giersch C, Delrue B, Lacroix J-M, Preiss J, Ball S. J. Bacteriol., 2001, 183(3): 1069-1077
[51] Ramazanov A, Ramazanov Z. Phycol. Res., 2006, 54(4): 255-259
[52] Germain V, Rylott E L, Larson T R, Sherson S M, Bechtold N, Carde J P, Bryce J H, Graham I A, Smith S M. Plant J., 2001, 28(1): 1-12
[53] Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J. Plant Physiol., 1997, 113(1): 75-81
[54] Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J. Plant Cell, 2010, 22(9): 2943-2955

[1] Feng Guodong, Cheng Lihua, Xu Xinhua, Zhang Lin, Chen Huanlin. Strategies in Genetic Engineering of Microalgae for High-Lipid Production [J]. Progress in Chemistry, 2012, 24(07): 1413-1426.
[2] . Advances on Technology of Microalgal High-lipid Production [J]. Progress in Chemistry, 2010, 22(06): 1221-1232.