中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (10): 2151-2159 Previous Articles   Next Articles

• Review •

Exploring Dynamics of Large Amplitude Internal Motions of Molecular Systems by Microwave Spectroscopy

Tang Shouyuan1,2, Fu Yujie3, Xia Zhining2,4, Li Baizhan1,2*   

  1. 1. Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400030, China;
    2. College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400030, China;
    3. College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, China;
    4. College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Received: Revised: Online: Published:
PDF ( 1084 ) Cited
Export

EndNote

Ris

BibTeX

Molecular group internal rotation and dynamics are of great significance in the expression of the activity and function of the molecules. Microwave spectroscopy which is capable of investigating the internal dynamics of molecular systems, the systematic structure of molecules, the conformation equilibria, weakly bound interactions, large amplitude motions, and quantum solvation mechanism, is a kind of technique with high sensitivity and resolution for studying group internal rotation dynamics and hyperfine structure of molecules. The large amplitude internal motions of molecular systems can be observed in their rotational spectra are reviewed in this paper. The typical motions are internal motion of methyl groups, internal motion of OH groups, inversion of amines and amides, organic ring motions and pseudorotation. Some our investigations are also discussed.

Contents
1 Introduction
2 Internal large amplitude motion of symmetric group
2.1 Internal large amplitude motion of single methyl group
2.2 Internal large amplitude motion of two and three methyl groups
2.3 Interplay of internal motion of methyl group with other motions
3 Internal motion of hydroxyl group
3.1 Internal large amplitude motion of hydroxyl group in organic ring
3.2 Internal motion of hydroxyl group in spherical top molecules
3.3 Internal motion of hydroxyl group in transient chiral molecules
4 Inversion of amines and other internal motions
5 Organic ring motions
5.1 Four- and five-membered ring puckering
5.2 Pseudorotation of organic ring
6 Conclusion and outlook

CLC Number: 

[1] 唐守渊(Tang S Y), 夏之宁(Xia Z N), 付钰洁(Fu Y J), 勾茜(Gou Q). 化学进展(Progress in Chemistry), 2009,21(5):1060-1069
[2] Dian B C, Brown G G, Douglass K O, Pate B H. Science, 2008, 320(5878): 924-928
[3] Schnell M, Grabow J U. Angew. Chem. Int. Ed., 2006, 45(21): 3465-3470
[4] Suma K, Sumiyoshi Y, Endo Y. Science, 2006, 311(5765): 1278-1281
[5] Baughcum S L, Smith Z, Wilson E B, Duerst R W. J. Am. Chem. Soc., 1984, 106(8): 2260-2264
[6] Suma K, Sumiyoshi Y, Endo Y. Science, 2005, 308(24): 1885-1886
[7] Melandri S, Evangelisti L, Maris A, Caminati W, Giuliano B M, Feyer V, Prince K C, Coreno M. J. Am. Chem. Soc., 2010, 132 (30):10269-10271
[8] Sanchez R, Giuliano B M, Melandri S, Favero L B, Caminati W. J. Am. Chem. Soc., 2007, 129(19): 6287-6290
[9] Maris A, Giuliano B M, Bonazzi D, Caminati W. J. Am. Chem. Soc., 2008, 130 (42): 13860-13861
[10] Tang S Y, Evangelisti L, Velino B, Caminati W. J. Chem. Phys., 2008, 129(14), 144301-144306
[11] Blanco S, Melandri S, Ottaviani P, Caminati W. J. Am. Chem. Soc., 2007, 129(9):2700-2703
[12] Tang J, Xu Y, Mckellar W A R, Jäger W. Science, 2002, 297(5589): 2030-2033
[13] Schwartz P R, Bevilacqua R M, Croskey C L, Olivero J J. Nature, 1983, 305(22): 294-295
[14] Cleeton C E, Williams N H. Phys. Rev., 1934, 45(2): 234-237
[15] Gordy W, Cook R L. Microwave molecular spectra. 2nd ed., New York: Wiley Interscience, 1984, 11-209
[16] Caminati W, Cazzoli G, Mirri A M. Chem. Phys. Letters, 1975, 31(1): 104-107
[17] Caminati W, Scappini F. J. Mol. Spectrosc., 1986, 117(2): 184-194
[18] Xu L H, Lees R M, Hougen J T. J. Chem. Phys., 1999, 110(8): 3835-3841
[19] Kleiner I, Hougen J T, Grabow J U, Belov S P, Tretyakov M, Cosléou J. J. Mol. Spectrosc., 1996, 179(1): 41-60
[20] Xu L H, Hougen J T. J. Mol. Spectrosc., 1995, 173(2): 540-551
[21] Hellweg A. Chem. Phys., 2008, 344(3):281-290
[22] Hellweg A, Hättig C. J. Chem. Phys., 2007, 127(2): 024307-024316
[23] Kawashima Y, Suenram R D, Hirota E. J. Mol. Spectrosc., 2003, 219(1):105-118
[24] Ohashi N, Hougen J T, Suenram R D, Lovas F J, Kawashima Y, Fujitake M, Pyka J. J. Mol. Spectrosc., 2004, 227(1): 28-42
[25] Fujitake M, Kubota Y, Ohashi N. J. Mol. Spectrosc., 2006, 236(1): 97-109
[26] Groner P, Herbst E, de Lucia F C, Drouin B J, Mäder H. J. Mol. Struct., 2006, 795(1/3): 173-178
[27] Schnell M, Grabow J U. Phys. Chem. Chem. Phys., 2006, 8: 2225-2231
[28] Schnell M, Grabow J U. Chem. Phys., 2008, 343(2/3): 121-128
[29] Caminati W, Grabow J U. J. Am. Chem. Soc., 2006, 128(3):854-857
[30] Evangelisti L, Tang S Y, Velino B, Giuliano B M, Melandri S, Caminati W. Chem. Phys. Letters, 2009, 473(4/6): 247-250
[31] Caminati W. J. Mol. Spectrosc., 1981, 90(2): 315-320
[32] Fantoni A C, Caminati W, Meyer R. Chem. Phys. Letters, 1987, 133(1): 27-33
[33] Caminati W, Meyer R. J. Mol. Spectrosc., 1981, 90(2): 303-314
[34] Mathier E, Bauder A, Günthard H H. J. Mol. Spetrosc., 1971, 37(1): 63-76
[35] Sanchez R, Giuliano B M, Melandri S, Caminati W. Chem. Phys. Letters, 2006, 425(1/3): 6-9
[36] Lesarri A, Shipman S T, Neill J L, Brown G G, Suenram R D, Kang L, Caminati W, Pate B H. J. Am. Chem. Soc., 2010, 132(38):13417-13424
[37] Tang S Y, Xia Z N, Maris A, Caminati W. Chem. Phys. Letters, 2010, 498(1/3): 52-55
[38] Evangelisti L, Favero L B, Caminati W. J. Mol. Struct., 2010, 978(1/3): 279-281
[39] Utzat K A, Bohn R K, Montgomery J A, Michels H H, Caminati W. J. Phys. Chem. A, 2010, 114(25): 6913-6916
[40] Oh J J, Drouin B J, Cohen E A. J. Mol. Spetrosc., 2005, 234(1): 10-24
[41] Cohen E A, Drouin B J, Valenzuela E A, Woods R C, Caminati W, Maris A, Melandri S. J. Mol. Spectrosc., 2010, 260(1): 77-83
[42] Tang S Y, Camianti W. Phys. Chem. Chem. Phys.,2011,13(20): 9137-9139
[43] Quack M. Angew. Chem. Int. Ed., 2005, 44(23): 3623-3626
[44] Snow M S, Howard B J, Evangelisti L, Caminati W. J. Phys. Chem. A, 2011, 115(1): 47-51
[45] Pearson J C, Sastry K V L N, Herbst E, De Lucia F C. J. Mol. Spetrosc., 1996, 175(2): 246-261
[46] Melandri S, Favero P G, Caminati W. Chem. Phys. Letters, 1994, 223(5/6): 541-545
[47] Hirota E, Kawashima Y. J. Mol. Spetrosc., 2001, 207(2): 243-253
[48] Wollrab J E, Laurie V W. J. Chem. Phys., 1968, 48(11):5058-5067
[49] Grabow J U, Andrews A M, Fraser G T, Irikura K K, Suenram R D, Lovas F J, Lafferty W J, Domenech J L. J. Chem. Phys., 1996, 105(17): 7249-7262
[50] Tang S Y, Evangelisti L, Caminati W. J. Mol. Spectrosc., 2009, 258(1/2): 71-74
[51] Chan S I, Zinn J, Fernandez J, Gwinn W D. J. Chem. Phys., 1960, 33(6): 1643-1655
[52] Harris D O, Harrington H W, Luntz A C, Gwinn W D. J. Chem. Phys., 1966, 44(9): 3467-3480
[53] Vogelsanger B, Caminati W, Bauder A. Chem. Phys. Letters, 1987, 141(3): 245-250
[54] Caminati W, Vogelsanger B, Meyer R, Grassi G, Bauder A. J. Mol. Spectrosc., 1988, 131(1): 172-184
[55] López J C, Alonso J L, Charro M E, Wlodarczak G, Demaison J. J. Mol. Spetrosc., 1992, 155(1): 143-157
[56] Hassan K H, Hollas J M. J. Mol. Spetrosc., 1991, 147(1):100-113
[57] Caminati W, Damiani D, Corbelli G, Favero L B. Mol. Physics, 1992, 75: 857-865
[58] Caminati W, Favero L B, Velino B, Zerbetto F. Mol. Physics, 1993, 78: 1561-1574
[59] Caminati W, Damiani D, Favero L B. Mol. Physics, 1993, 76: 699-708
[60] Caminati W, Melandri S, Corbelli G, Favero L B, Meyer R. Mol. Physics, 1993, 80: 1297-1315
[61] Ottaviani P, Caminati W. Chem. Phys. Letters, 2005, 405(1/3): 68-72
[62] Kilpatrick J E, Pitzer K S, Spitzer R. J. Am. Chem. Soc., 1947, 69(10):2483-2488
[63] Harris D O, Engerholm G, Tolman C, Luntz A, Keller R, Kim H, Gwinn W D. J. Chem. Phys., 1969, 50(6):2438-2446
[64] Dommen J, Brupbacher J, Grassi G, Bauder A. J. Am. Chem. Soc., 1990, 112(3): 953-957
[65] Meyer R, López J C, Alonso J L, Melandri S, Favero P G, Caminati W. J. Chem. Phys., 1999, 111(17): 7871-7880
[66] Melnik D G, Gopalakrishnan S, Miller T A, de Lucia F C. J. Chem. Phys., 2003, 118(8): 3589-3599
[67] Melnik D G, Miller T A, de Lucia F C. J. Mol. Spetrosc., 2003, 221(2): 227-238
[68] Melnik D G, Miller T A. Science, 2008, 320(5878): 881-882

[1] Yizhou Yang, Bingquan Peng, Xiaoling Lei, Haiping Fang. Aromatic Rings in Ion Soultions: Two-Dimensional Crystals of Unconventional Stoichiometries and Ferromagnetism [J]. Progress in Chemistry, 2022, 34(7): 1524-1536.
[2] Li Geng, Li Jie, Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng. Mechano-Responsive Luminescent Polymers [J]. Progress in Chemistry, 2022, 34(10): 2222-2238.
[3] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[4] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[5] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[6] Zhijun Pan, Wei Zhuang, Hongfei Wang. Dynamic Vibrational Spectroscopy in Condensed Matter Chemistry: Theory and Techniques [J]. Progress in Chemistry, 2020, 32(8): 1203-1218.
[7] Yue Ding, Bo Lu, Junhui Ji. Compatibilization Strategies of PLA-Based Biodegradable Materials [J]. Progress in Chemistry, 2020, 32(6): 738-751.
[8] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.
[9] Hui-Juan Wang, Yu Liu. Molecular Binding and Assembly of Sulfonated Crown Ethers [J]. Progress in Chemistry, 2020, 32(11): 1651-1664.
[10] Yue Liu, Yihan Wu, Hongwei Pang, Xiangxue Wang, Shujun Yu, Xiangke Wang. Study on the Removal of Water Pollutants by Graphite Phase Carbon Nitride Materials [J]. Progress in Chemistry, 2019, 31(6): 831-846.
[11] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.
[12] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[13] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[14] Lianxun Gao, Chuanqing Kang*, Lianxun Gao. Anion-Naphthalenediimide Interactions and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 902-912.
[15] Guangyan Qing, Zhonghui Chen, Guangyan Qing*. Interfacial Interaction on Phospholipid Membrane [J]. Progress in Chemistry, 2018, 30(7): 888-901.