中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (10): 2132-2139 Previous Articles   Next Articles

• Review •

Ionic Liquids and Protein/Nucleic Acid Interaction

Zhang Tao1, Chen Fan1, Gai Qingqing1, Qu Feng1*, Zhang Yukui2   

  1. 1. School of Life Science, Beijing Institute of Technology, Beijing 100081, China;
    2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received: Revised: Online: Published:
PDF ( 1219 ) Cited
Export

EndNote

Ris

BibTeX

Room-temperature ionic liquids(ILs)have aroused considerable interest recent years. They have been widely applied in biological catalysis and proteins and nucleic acids separation due to their good compatibility and unique properties. The interaction of ionic liquids and biological macromolecules is the foundation of their theory and application study. In this paper, the types of common used ILs, the principle of interaction between ionic liquids and protein, and ionic liquids and nucleic acid are introduced respectively. Furthermore, the recent application of ILs in biological catalysis, biological molecules separation electrochemical analysis as well as capillary electrophoresis analysis is reviewed.

Contents
1 Introduction
2 Type of ILs
3 Interaction between ILs and protein
3.1 Electrostatic interaction
3.2 Hydrophobic interaction
3.3 Hydrogen bond interaction
3.4 Coordination interaction
4 Interaction between ILs and nucleic acid
4.1 Electrostatic interaction
4.2 Hydrophobic interaction
4.3 Hydrogen bond interaction
5 Application of ILs based on the interaction between protein and nucleic acid
5.1 Enzyme-catalyzed reaction
5.2 Extraction separation
5.3 Electrochemical analysis
5.4 Separation and analysis in CE
6 Outlook

CLC Number: 

[1] Han X X, Armstrong D W. Acc. Chem. Res., 2007, 40(11): 1079-1086
[2] Mwongela S M, Numan A, Gill N L, Agbaria R A, Warner I M. Anal. Chem., 2003, 75(22): 6089-6096
[3] Hu X L, Peng J F, Huang Y J, Yin D Q, Liu J F. J. Sep. Sci., 2009, 32(23/24): 4126-4132
[4] Tzeng Y P, Shen C W, Yu T. J. Chromatogr. A, 2008, 1193(1/2): 1-6
[5] Sharifi A, Barazandeh M, Abaee M S, Mirzaei M. Tetrahedron Lett., 2010, 51(14): 1852-1855
[6] Xu Y H, Li J, Wang E K. J. Chromatogr. A, 2008, 1207(1/2): 175-180
[7] Erbeldinger M, Mesiano A J, Russell A J. Biotechnol. Prog., 2000, 16(6): 1129-1131
[8] Gamba M, Alexandre, Lapis A M, Dupont J. Adv. Synth. Catal., 2008, 350(1): 160-164
[9] Sate D, Janssen M H A, Stephens G, Sheldon R A, Seddon K R, Lu J R. Green Chem., 2007, 9(8): 859-867
[10] Roosen C, Müller P, Greiner L. Appl. Microbiol. Biotechnol., 2008, 81(4): 607-614
[11] Dreyer S, Salim P, Kragl U. Biochem. Eng. J., 2009, 46(2): 176-185
[12] Pei Y C, Wang J J, Wu K, Xuan X P, Lu X J. Sep. Purif. Technol., 2009, 64(3): 288-295
[13] Shu Y, Chen X W, Wang J H. Talanta, 2010, 81(1/2): 637-642
[14] Qin W D, Fong S, Li Y. Analyst, 2003, 128(1): 37-41
[15] Xu Y H, Jiang H, Wang E K. Electrophoresis, 2007, 28(24): 4597-4605
[16] Jiang T F, Gu Y L, Liang B, Li J B, Shi Y P, Ou Q Y. Anal. Chim. Acta, 2003, 479(2): 249-254
[17] Chitta K R, van Meter D S, Stalcup A M. Anal. Bioanal. Chem., 2010, 396(2): 775-781
[18] Li D, Wang Z M, Wang L, Qu C L, Zhang H Q. Chromatographia, 2009, 70(5/6): 825-830
[19] Huang K, Han X X, Zhang X T, Armstrong D W. Anal. Bioanal. Chem., 2007, 389(7/8): 2265-2275
[20] Xu Y, Wang E. J. Chromatogr. A, 2009, 1216(24): 4817-4823
[21] Marszall M P, Kaliszan R. Anal. Chem., 2007, 37(2): 127-140
[22] Buszewski B, Studziska S. Chromatographia, 2008, 68(1/2): 1-10
[23] Berthod A, Ruiz-ángel M J, Carda-Broch S. J. Chromatogr. A, 2008, 1184(1/2): 6-18
[24] Corradini D, Nicoletti I, Bonn G K. Electrophoresis, 2009, 30(11): 1869-1876
[25] Xie Y N, Wang S F, Zhang Z L, Pang D W. J. Phys. Chem. B, 2008, 112(32): 9864-9868
[26] Zhang L Q, Li H R. Acta. Phys. Chim. Sin., 2010, 26(11): 2877-2889
[27] Sun N, Zhang S J, Zhang X P, Li Z X. Chinese J. Process. Eng., 2005, 5(6): 689-702
[28] 王仲妮(Wang Z N), 王洁莹(Wang J Y), 司友华(Si Y H), 周武(Zhou W). 化学进展(Prog. Chem.), 2008, 20(7/8): 1057-1063
[29] Anderson J L, Armstrong D W, Wei G T. Anal. Chem., 2006, 78(9): 2892-2902
[30] Li X X, Xu X D, Dan Y Y, Feng J, Ge L, Zhang M L. Cryst. Res. Technol., 2008, 43(10): 1062-1068
[31] Judge R A, Takahashi S, Longenecker K L, Elizabeth H F, Cele A Z, Chiu M L. Cryst. Growth. Des., 2009, 9(8): 3463-3469
[32] Dariusch H, Dirk H, Dirk W B. Chem. Eng. Technol., 2008, 31 (6): 911-916
[33] Chen X W, Ji Y P, Wang J H. Analyst, 2010, 135 (9): 2241-2248
[34] Diana C, Hermann W, Christian H. Angew. Chem. Int. Ed., 2007, 46(46): 8887 -8889
[35] Liu L Y, Chen H Z. Chinese Sci. Bulletin, 2006, 51(20): 2432-2436
[36] Byrneand N, Angell C A. J. Mol. Biol., 2008, 378(3): 707-714
[37] Cui G Y, Ni M X. Prog. Phar. Sci., 2010, 34(11): 499-506
[38] Ge L Y, Wang X T, Tana S N, Tsai H H, Yong J W H, Hua L. Talanta, 2010, 81(4/5): 1861-1864
[39] Du Z, Yu Y L, Wang J H. Chem. Eur. J., 2007, 13(7): 2130-2137
[40] 姜大雨(Jiang D Y), 朱红(Zhu H), 王良(Wang L), 马春宏(Ma C H), 闫永胜(Yan Y S), 王庆伟(Wang Q W). 化学试剂(China Reagens), 2010, 32(9): 805-810
[41] Han B, Zhang L H, Liang Z, Qu F, Deng Y L, Zhang Y K. Sci. Sin. Chim., 2010, 40(10): 1487-1495
[42] Wen Y L, Yang X D, Hu G H, Chen S H, Jia N Q. Electro-Chim. Acta, 2008, 54(2): 744-748
[43] Li Z Y, Pei Y C, Wang J J. J. Henan Normal University (Natural Science), 2010, 38(1): 100-104
[44] Chun S V, Dzyuba S, Bartsch R A. Anal. Chem., 2001, 73(15): 3737-3741
[45] Cheng D H, Chen X W, Shu Y, Wang J H. Talanta, 2008, 75(5): 1270-1278
[46] Page T A, Kraut N D, Page P M, Baker G A, Bright F V. J. Phys. Chem. B, 2009, 113(38): 12825-12830
[47] Micaelo N M, Soares C M. J. Phys. Chem. B, 2008, 112(9): 2566-2572
[48] Wang K, Wang J F. J. Mol. Cata., 2009, 23(1): 73-77
[49] Chen X W, Liu Y J, Su Y, Wang J H. Sci. Sin. Chim., 2010, 40(1): 63-69
[50] 程德红(Cheng D H), 陈旭伟(Chen X W), 舒杨(Shu Y), 王建华(Wang J H). 分析化学(Chinese J. Anal. Chem.), 2008, 36(9): 1187-1190
[51] 吴会灵(Wu H L), 杨芃原(Yang P Y), 张重杰(Zhang Z J), 何锡文(He X W). 分析化学(Chinese J. Anal. Chem.), 2004, 32(9): 1256-1261
[52] Vijayaraghavan R, Izgorodin A, Ganesh V, Surianarayanan M, MacFarlane D R. Angew. Chem. Int. Ed., 2010, 122(9): 1675-1677
[53] Lee C K, Shin S R, Lee S H, Jeon J H, So I, Kang T M, Kim S I, Mun J Y, Han S S, Spinks G M, Wallace G G, Kim S J. Angew. Chem. Int. Ed., 2008, 120(13): 2504-2508
[54] Nishimura N, Ohno H. J. Mater. Chem., 2002, 12(8): 2299-2304
[55] Wang J H, Cheng D H, Chen X W, Du Z, Fang Z L. Anal. Chem., 2007, 79(2), 620-625
[56] Cheng D H, Chen X W, Wang J H, Fang Z L. Chem. Eur. J., 2007, 13(17): 4833-4839
[57] Wang H Y, Wang J J, Zhang S B. Phys. Chem. Chem. Phys., 2011, 13: 3906-3910
[58] Ding Y H, Zhang L, Xie J, Guo R. J. Phys. Chem. B, 2010, 114(5): 2033-2043
[59] Uzagare M C, Sanghvi Y S, Salunkhe M M. Green Chem., 2003, 5(4): 370-372
[60] Sheldon R A, Lau R M, Sorgedrager M J, van Rantwijk F, Seddon K R. Green Chem., 2002, 4(2): 147-151
[61] Park S, Kazlauskas R J. Curr. Opin. Biotech., 2003, 14(4): 432-437
[62] Yang Z, Pan W B. Enzyme. Microb. Tech., 2005, 37(1): 19-28
[63] Moon Y H, Lee S M, Ha S H, Koo Y M. Korean J. Chem. Eng., 2006, 23(2): 247-263
[64] Zhao H. J. Chem. Technol. Biotechnol., 2010, 85(7): 891-907
[65] Moniruzzamana M, Nakashimab K, Kamiyaa N, Goto M. Biochem. Eng. J., 2010, 48(3): 295-314
[66] Chen X W, Liu J W, Wang J H. Anal. Methods, 2010, 2(9): 1222-1226
[67] Gutowski K E, Broker G A, Willauer H D, Huddleston J G, Swatloski R P, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2003, 125(22): 6632-6633
[68] Li Z Y, Pei Y C, Wang H Y, Fan J, Wang J J. Trends Anal. Chem., 2010, 29(11): 1336-1346
[69] Pei Y C, Li Z Y, Liu L, Wang J J, Wang H Y. Sci. China Chem., 2010, 53(7): 1554-1560
[70] Shiddiky M J A, Torriero A A J. Biosens. Bioelectron., 2010, 13: 1-13
[71] Shangguan X D, Zhang H F, Zheng J B. Electrochem. Commun., 2008, 10(8): 1140-1143
[72] Wang S F, Chen T, Zhang Z L, Pang D W. Electrochem. Commun., 2007, 9(6): 1337-1342
[73] Sun W, Xi M Y, Zhang L, Zhan T R, Gao H W, Jiao K. Electrochim. Acta, 2010, 56(1): 222-226
[74] Li T, Li B L, Dong S J, Wang E K. Chem. Eur. J., 2007, 13: 8516-8521
[75] Wu X P, Wei W P, Su Q M, Xu L J, Chen G N. Electrophoresis, 2008, 29(11): 2356-2362
[76] Li J, Han H F, Wang Q, Liu X, Jiang S X. Anal. Chim. Acta, 2010, 674(2): 243-248

[1] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[2] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[3] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[4] Yizhou Yang, Bingquan Peng, Xiaoling Lei, Haiping Fang. Aromatic Rings in Ion Soultions: Two-Dimensional Crystals of Unconventional Stoichiometries and Ferromagnetism [J]. Progress in Chemistry, 2022, 34(7): 1524-1536.
[5] Yanyan Wang, Limin Chen, Siyang Li, Luhua Lai. How Intrinsically Disordered Proteins Modulate Biomolecular Condensates [J]. Progress in Chemistry, 2022, 34(7): 1610-1618.
[6] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[7] Chen Yaqiong, Song Hongdong, Wu Mao, Lu Yang, Guan Xiao. Application of Protein-Polysaccharide Complex System in the Delivery of Active Ingredients [J]. Progress in Chemistry, 2022, 34(10): 2267-2282.
[8] Li Geng, Li Jie, Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng. Mechano-Responsive Luminescent Polymers [J]. Progress in Chemistry, 2022, 34(10): 2222-2238.
[9] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[10] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[11] Wenjie Liu, Kaihui Liu, Yanwei Zhang, Liang Wang, Mengyi Zhang, Jing Li. The Mechanism of Glycosylation in SARS-CoV-2 Infection and Application in Drug Development [J]. Progress in Chemistry, 2021, 33(4): 524-532.
[12] Ximeng Cheng, Qingrui Zhang. Functional Protein Based Nanomaterials for Environmental Protection Application [J]. Progress in Chemistry, 2021, 33(4): 678-688.
[13] Shuang Yang, Xianpeng Yang, Baojun Wang, Lei Wang. Design and Applications of Fluorogenic Nucleic Acid-Based Paper Biosensors [J]. Progress in Chemistry, 2021, 33(12): 2309-2315.
[14] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[15] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.