中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (10): 2119-2131 Previous Articles   Next Articles

• Review •

Applications of G-Quadruplex-Hemin DNAzymes in Sensor Design

Kong Deming*   

  1. Research Centre for Analytical Sciences, Department of Chemistry, Nankai University, Tianjin 300071, China
  • Received: Revised: Online: Published:
PDF ( 1398 ) Cited
Export

EndNote

Ris

BibTeX

G-quadruplex-Hemin DNAzymes are a kind of peroxidase-like artificial enzymes formed by nucleic acid G-quadruplexes and Hemin. As an kind of important DNAzymes, G-quadruplex-hemin DNAzymes have attracted more and more attention in analytical chemistry in these years. G-quadruplex-hemin DNAzymes have been used in the design of several sensors, such as metal ion sensors, aptasensors, enzyme sensors, DNA sensors and drug sensors. This paper provides an overview of the progress of G-quadruplex-hemin DNAzyme-based sensors and the design strategies are introduced in detail. In addition, the future development of this kind of DNAzymes is prospected.

Contents
1 Introduction
2 Metal ion sensors
2.1 K+ sensors
2.2 Hg2+ sensors
2.3 Ag+ sensors
2.4 Pb2+ sensors
2.5 Cu2+ sensors
3 Aptasensors
4 Enzyme sensors
4.1 Telomerase sensors
4.2 Methyltransferase sensors
5 DNA sensors
5.1 Homogenous DNA sensors
5.2 Heterogenous DNA sensors
6 Drug sensors
7 Prospect

CLC Number: 

[1] Willner I, Shlyahovsky B, Zayats M, Willner B. Chem. Soc. Rev., 2008, 37(6): 1153-1165
[2] Huppert J L. FEBS J., 2010, 277(17): 3452-3458
[3] Lipps H J, Rhodes D. Trends Cell Biol., 2009, 19(8): 414-422
[4] Travascio P, Li Y, Sen D. Chem. Biol., 1998, 5(9): 505-517
[5] Travascio P, Bennet A J, Wang D Y, Sen D. Chem. Biol., 1999, 6(11): 779-787
[6] Li B, Dong S J, Wang E K. Chem. Asian J., 2010, 5(6): 1262-1272
[7] Yu S P, Canzoniero M T, Choi D W. Curr. Opin. Cell Biol., 2001, 13(4): 405-411
[8] Sundquist W I, Klug A. Nature, 1989, 342(6251): 825-829
[9] Mergny J L, Phan A T, Lacroix L. FEBS Lett., 1998, 435(1): 74-78
[10] De Cian A, Guittat L, Kaiser M, Saccà B, Amrane S, Bourdoncle A, Alberti P, Teulade-Fichou M P, Lacroix L, Mergny J L. Methods, 2007, 42(2): 183-195
[11] Takenaka S, Ueyama H, Nojima T, Takagi M. Anal. Bioanal. Chem., 2003, 375(8): 1006-1010
[12] Ueyama H, Takagi M, Takenaka S. J. Am. Chem. Soc., 2002, 124(48): 14286-14287
[13] Nagatoishi S, Nojima T, Juskowiak B, Takenaka S. Angew. Chem. Int. Ed. Engl., 2005, 44(32): 5067-5070
[14] Nagatoishi S, Nojima T, Galezowska E, Gluszynska A, Juskowiak B, Takenaka S. Anal. Chim. Acta, 2007, 581(1): 125-131
[15] Nagatoishi S, Nojima T, Galezowska E, Juskowiak B, Takenaka S. Chembiochem., 2006, 7(11): 1730-1737
[16] Nagatoishi S, Nojima T, Takenaka S. Nucleic Acids Symp. Ser. (Oxf), 2005, (49): 233-234
[17] He F, Tang Y, Wang S, Li Y, Zhu D. J. Am. Chem. Soc., 2005, 127(35): 12343-12346
[18] Kong D M, Ma Y E, Guo J H, Yang W, Shen H X. Anal. Chem., 2009, 81(7): 2678-2684
[19] Kong D M, Guo J H, Yang W, Ma Y E, Shen H X. Biosens. Bioelectron., 2009, 25(1): 88-93
[20] Li T, Wang E K, Dong S J. Chem. Commun., 2009, 580-582
[21] Kong D M, Yang W, Wu J, Li C X, Shen H X. Analyst, 2010, 135(2): 321-326
[22] Liu J W, Lu Y. Angew. Chem. Int. Ed., 2007, 46(40): 7587-7590
[23] Kuklenyik Z, Marzilli L G. Inorg. Chem., 1996, 35(19): 5654-5662
[24] Li T, Dong S J, Wang E K. Anal. Chem., 2009, 81(6): 2144-2149
[25] Li T, Li B, Wang E K, Dong S J. Chem. Commun., 2009, 3551-3553
[26] Lu N, Shao C Y, Deng Z X. Analyst, 2009, 134(9): 1822-1825
[27] Li T, Shi L, Wang E K, Dong S J. Chem. Eur. J., 2009, 15(9): 1036-1042
[28] Kong D M, Wang N, Guo X X, Shen H X. Analyst, 2010, 135(3): 545-549
[29] Zhang D, Deng M G, Xu L, Zhou Y, Jing Y W, Zhou X. Chem. Eur. J., 2009, 15(33): 8117-8120
[30] Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamoto I, Tanaka Y. Chem. Commun., 2008, 4825-4827
[31] Li T, Shi L, Wang E K, Dong S J. Chem. Eur. J., 2009, 15(14): 3347-3350
[32] Kong D M, Cai L L, Shen H X. Analyst, 2010, 135(6): 1253-1258
[33] Zhou X H, Kong D M, Shen H X. Anal. Chim. Acta, 2010, 678(1): 124-127
[34] Zhou X H, Kong D M, Shen H X. Anal. Chem., 2010, 82(3): 789-793
[35] Kong D M, Xu J, Shen H X. Anal. Chem., 2010, 82(14): 6148-6153
[36] Lan T, Furuya K, Lu Y. Chem. Commun., 2010, 3896-3898
[37] Li T, Wang E K, Dong S J. J. Am. Chem. Soc., 2009, 131(42): 15082-15083
[38] Smirnov I, Shafer R H. J. Mol. Biol., 2000, 296(1): 1-5
[39] Kotch F W, Fettinger J C, Davis J T. Org. Lett., 2000, 2(21)3277-3280
[40] Li T, Wang E K, Dong S J. Anal. Chem., 2010, 82(4): 1515-1520
[41] Elbaz J, Shlyahovsky B, Willner I. Chem. Commun., 2008, 1569-1571
[42] Yin B C, Ye B C, Tan W. J. Am. Chem. Soc., 2009, 131(41): 14624-14625
[43] Carmi N, Balkhi S R, Breaker R R. Proc. Natl. Acad. Sci. USA, 1998, 95(5): 2233-2237
[44] Li D, Shlyahovsky B, Elbaz J, Willner I. J. Am. Chem. Soc., 2007, 129(18): 5804-5805
[45] Teller C, Shimron S, Willner I. Anal. Chem., 2009, 81(21): 9114-9119
[46] Li T, Wang E K, Dong S J. Chem. Commun., 2008, 3654-3656
[47] Liu J P, Chen W, Schwarer A P, Li H. Biochim. Biophys. Acta, 2010, 1805(1): 35-42
[48] Kong D M, Jin Y W, Yin Y J, Mi H F, Shen H X. Anal. Bioanal. Chem., 2007, 388(3): 699-709
[49] Xiao Y, Pavlov V, Niazov T, Dishon A, Kotler M, Willner I. J. Am. Chem. Soc., 2004, 126(24): 7430-7431
[50] Pavlov V, Xiao Y, Gill R, Dishon A, Kotler M, Willner I. Anal. Chem., 2004, 76(7): 2152-2156
[51] Berletch J B, Andrews L G, Tollefsbol T O. Methods Mol. Biol., 2007, 371: 73-80
[52] Li W, Liu Z L, Lin H, Nie Z, Chen J, Xu X, Yao S. Anal. Chem., 2010, 82(5): 1935-1941
[53] Deng M G, Zhang D, Zhou Y Y, Zhou X. J. Am. Chem. Soc., 2008, 130(39): 13095-13102
[54] Kolpashchikov D M. J. Am. Chem. Soc., 2008, 130(10): 2934-2935
[55] Darius A K L, Ling N J, Mahesh U. Mol. BioSyst., 2010, 6(5): 792-794
[56] Wang N, Kong D M, Shen H X. Chem. Commun., 2011, 1728-1730
[57] Weizmann Y, Beissenhirtz M K, Cheglakov Z, Nowarski R, Kotler M, Willner I. Angew. Chem. Int. Ed., 2006, 45(44): 7384-7388
[58] Pelossof G, Tel-Vered R, Elbaz J, Willner I. Anal. Chem., 2010, 82(11): 4396-4402
[59] Parkinson G N, Lee M P H, Neidle S. Nature, 2002, 417(3891): 876-880
[60] Cuesta J, Read M A, Neidle S. Mini. Rev. Med. Chem., 2003, 3(1): 11-21
[61] Kong D M, Wu J, Ma Y E, Shen H X. Analyst, 2008, 133(9): 1158-1160
[62] Poon L C H, Methot S P, Morabi-Pazooki W, Pio F, Bennet A J, Sen D. J. Am. Chem. Soc., 2011, 133(6): 1877-1884
[63] Thirstrup D, Baird G S. Anal. Chem., 2010, 82(6): 2498-2504
[64] Nakayama S, Sintim H O. Mol. BioSyst., 2010, 6(1): 95-97

[1] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[2] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[3] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[4] Lujie Fan, Li Chen, Yin He, Hao Liu. Flexible Pressure/Strain Sensors Based on 3D Conductive Materials [J]. Progress in Chemistry, 2021, 33(5): 767-778.
[5] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[6] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[7] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[8] Yaoxu Xiong, Yougen Hu, Pengli Zhu, Rong Sun, Ching-Ping Wong. Fabrication and Application of Flexible Pressure Sensors with Micro/Nano-Structures [J]. Progress in Chemistry, 2019, 31(6): 800-810.
[9] Cheng Chen, Zhiqiang Dong, Haowen Chen, Yang Chen, Zhigang Zhu, Weiheng Shih. Two-Dimensional Photonic Crystals [J]. Progress in Chemistry, 2018, 30(6): 775-784.
[10] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[11] Zicheng Li, Gongke Li*, Yuling Hu*. Stimuli-Responsive Polymers in Biomedical Applications [J]. Progress in Chemistry, 2017, 29(12): 1480-1487.
[12] Xinxin Jiang, Chengjun Zhao, Chunju Zhong, Jianping Li*. The Electrochemical Sensors Based on MOF and Their Applications [J]. Progress in Chemistry, 2017, 29(10): 1206-1214.
[13] Deng Wangping, Wang Lihua, Song Shiping, Zuo Xiaolei. Biosensors in POCT Application [J]. Progress in Chemistry, 2016, 28(9): 1341-1350.
[14] Zheng Xiaohui, Xia Lixin, Mao Zongwan. The New Anticancer Platinum Complex Designed on the Basis of Nucleic Acid [J]. Progress in Chemistry, 2016, 28(7): 1029-1038.
[15] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.