中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (10): 2113-2118 Previous Articles   Next Articles

• Review •

Nanoassembly and Biosensing of Porphyrins

Tu Wenwen, Lei Jianping*, Ju Huangxian*   

  1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received: Revised: Online: Published:
PDF ( 1405 ) Cited
Export

EndNote

Ris

BibTeX

Porphyrins are important classes of conjugated organic molecules,which could mimic the active site of many important enzymes. A series of porphyrin molecules,such as planar porphyrin,picket-fence porphyrin,macroporphyrin and triphyrin,have been synthesized to mimic the catalytic activity of biological protein. Many metalloprotein enzymes usually self-assemble in vivo to form nanosized supermolecular structure to realize their biocatalysis. The order nanoassembly of porphyrins on nanomaterials by covalent or noncovalent way can mimic metalloprotein enzymes and realize their functions. Metalloporphyrins have been well used as electron transfer mediators and exhibited good electrocatalytic activity toward the reduction or oxidation of many small molecules related to life process. Thus,the nanocomposites of metalloporphyrin-nanomaterials have been good candidates to construct novel electrochemical biosensors. Meanwhile,owing to the good photophysical and photochemical properties,the nanocomposites of metalloporphyrin-nanomaterials have also been employed to develop novel photoelectrochemical biosensing platforms for detection of biomolecules. In this review,the systhysis and nanoassembly of porphyrins,and biosensing application of the formed nanocomposite are highlighted to provide the reference information for the development of novel electrochemical and photoelectrochemical biosensors.

Contents
1 Introduction
2 Synthesis of porphyrins
3 Ordered nanoassembly of porphyrins
4 Biosensing of porphyrin nanocomposites
4.1 Electrochemical biosensors
4.2 Photochemical biosensors
4.3 Photoelectrochemical biosensors
5 Conclusions and outlook

CLC Number: 

[1] 王荣民(Wang R M),朱永峰(Zhu R F),何玉凤(He Y F),李岩(Li Y),毛崇武(Mao C W),何乃普(He N P). 化学进展(Progress in Chemistry), 2010, 22(10): 1952-1963
[2] 张建斌(Zhang J B), 张鹏燕(Zhang P Y), 陈国华(Chen G H), 韩芳(Han F), 魏雄辉(Wei X H). 化学进展(Progress in Chemistry), 2009, 21(4): 771-776
[3] 赵玮(Zhao W), 佟斌(Tong B), 支俊格(Zhi J G), 潘月秀(Pan Y X), 申进波(Shen J B), 董宇平(Dong Y P). 化学进展(Progress in Chemistry), 2009, 21(12): 2625-2634
[4] Collman J P, Yan Y L, Lei J P, Dinolfo P H. Inorg. Chem., 2006, 45: 7581-7583
[5] Collman J P, Yan Y L, Lei J P, Dinolfo P H. Org. Lett., 2006, 8: 923-926
[6] Collman J P, Boulatov R C, Sunderland J, Fu L. Chem. Rev., 2004, 104: 561-588
[7] Wasser I M, Huang H W, Monne-Loccoz P, Karlin K D. J. Am. Chem. Soc., 2005, 127: 3310-3320
[8] Liu J G, Naruta Y, Tani F. Angew. Chem. Int. Ed., 2005, 44: 1836-1840
[9] Balaban T S, Linke-Schaetzel M, Bhise A D, Vanthuyne N, Christian R, Anson C E, Buth G, Eichhöfer A, Foster K, Garab G, Gliemann H, Goddard R, Javorfi T, Powell A K, Rösner H, Schimmel T. Chem. Eur. J., 2005, 11: 2267-2275
[10] Chen J, Hamon M A, Hu H, Chen Y S, Rao A M, Eklund P C, Haddon R C. Science, 1998, 282: 95-98
[11] Imahori H, Fukuzumi S. Adv. Funct. Mater., 2004, 14: 525-536
[12] Guldi D M, Rahman G M A, Zerbetto F, Prato M. Acc. Chem. Res., 2005, 38: 871-878
[13] Sgobba V, Guldi D M. Chem. Soc. Rev., 2009, 38: 165-184
[14] Baskaran D, Mays J W, Zhang X P, Bratcher M S. J. Am. Chem. Soc., 2005, 127: 6916-6917
[15] Huang M H, Shen Y, Cheng W L, Shao Y, Sun X P, Liu B F, Dong S J. Anal. Chim. Acta, 2005, 535: 15-22
[16] Ferguson-Miller S, Babcock G T. Chem. Rev., 1996, 96: 2889-2908
[17] Lei J P, Ju H X, Ikeda O. Electrochim. Acta, 2004, 49: 2453-2460
[18] Lei J P, Ju H X, Ikeda O. J. Electroanal. Chem., 2004, 567: 331-338
[19] Wu D, Descalzo A B, Weik F, Emmerling F, Shen Z, You X Z, Rurack K. Angew. Chem. Int. Ed., 2008, 47: 193-197
[20] Xue Z L, Shen Z, Mack J, Kuzuhara D, Yamada H, Okujima T, Ono N, You X Z, Kobayashi N. J. Am. Chem. Soc., 2008, 130: 16478-16479
[21] Ohyama J, Hitomi Y, Higuchi Y, Shinagawa M, Mukai H, Kodera M, Teramura K, Shishido T, Tanaka T. Chem. Commun., 2008, 6300-6302
[22] Satake A, Fujita M, Kurimoto Y, Kobuke Y. Chem. Commun., 2009, 1231-1233
[23] Rochford J, Chu D, Hagfeldt A, Galoppini E. J. Am. Chem. Soc., 2007, 129: 4655-4665
[24] Kathiravan A, Kumar P S, Renganathan R. Anandan S. Colloid Surf. A-Physicochem. Eng. Asp., 2009, 333: 175-181
[25] Said A J, Poize G, Martini C, Ferry D, Marine W, Giorgio S, Fages F, Hocq J, Bouclé J, Nelson J, Durrant J R, Ackermann J. J. Phys. Chem. C, 2010, 114: 11273-11278
[26] Mozer A J, Wagner P, Officer D L, Wallace G G, Campbell W M, Miyashita M, Sunahara K, Mori S. Chem. Commun., 2008, 4741-4743
[27] Tanaka M, Hayashi S, Eu S, Umeyama T, Matano Y, Imahori H. Chem. Commun., 2007, 2069-2071
[28] Eu S, Hayashi S, Umeyama T, Oguro A, Kawasaki M, Kadota N, Matano Y, Imahori H. J. Phys. Chem. C, 2007, 111: 3528-3537
[29] Hayashi S, Tanaka M, Hayashi H, Eu S, Umeyama T, Matano Y, Araki Y, Imahori H. J. Phys. Chem. C, 2008, 112: 15576-15585
[30] Rochford J, Galoppini E. Langmuir, 2008, 24: 5366-5374
[31] Yu J H, Chen J R, Wang X S, Zhang B W, Cao Y. Chem. Commun., 2003, 1856-1857
[32] Kang S, Yasuda M, Miyasaka H, Hayashi H, Kawasaki M, Umeyama T, Matano Y, Yoshida K, Isoda S, Imahori H. ChemSusChem, 2008, 1: 254-261
[33] Murakami H, Nomura T, Nakashima N. Chem. Phys. Lett., 2003, 378: 481-485
[34] Guldi D M, Rahman G M A, Prato M, Jux N, Qin S H, Ford W. Angew. Chem. Int. Ed., 2005, 44: 2015-2018
[35] Liu Z B, Tian J G, Guo Z, Ren D M, Du F, Zheng J Y, Chen Y S. Adv. Mater., 2008, 20: 511-515
[36] Hasobe T, Fukuzumi S, Kamat P V. J. Am. Chem. Soc., 2005, 127: 11884-11885
[37] Xu Y F, Liu Z B, Zhang X L, Wang Y, Tian J G, Huang Y, Ma Y F, Zhang X Y, Chen Y S. Adv. Mater., 2009, 21: 1275-1279
[38] Xu Y X, Zhao L, Bai H, Hong W J, Li C, Shi G Q. J. Am. Chem. Soc., 2009, 131: 13490-13497
[39] Alvaro M, Atienzar P, Cruz P D L, Delgado J L, Troiani V, Garcia H, Langa F, Palkar A, Echegoyen L. J. Am. Chem. Soc., 2006, 128: 6626-6635
[40] Yu J X, Mathew S, Flavel B S, Johnston M R, Shapter J G. J. Am. Chem. Soc., 2008, 130: 8788-8796
[41] Chitta R, Sandanayaka A S D, Schumacher A L, D'Souza L, Araki Y, Ito O, D'Souza F. J. Phys. Chem. C, 2007, 111: 6947-6955
[42] Liu Y, Yan Y L, Lei J P, Wu F, Ju H X. Electrochem. Commun., 2007, 9: 2564-2570
[43] Tu W W, Lei J P, Ju H X. Electrochem. Commun., 2008, 10: 766-769
[44] Wu Y H. Food Chem., 2010, 121: 580-584
[45] Tu W W, Lei J P, Ju H X. Chem. Eur. J., 2009, 15: 779-784
[46] Tu W W, Lei J P, Jian G Q, Hu Z, Ju H X. Chem. Eur. J., 2010, 16: 4120-4126
[47] Walker R. Food Add. Contam., 1985, 2: 5-24
[48] Situmorang M, Hibbert D B, Gooding J J, Barnett D. Analyst, 1999, 124: 1775-1779
[49] Vally H, Carr A, El-Saleh J, Thompson P. J. Allergy Clin. Immunol., 1999, 103: 41-46
[50] Vally H, Thompson P. Thorax, 2001, 56: 763-769
[51] Tu W W, Lei J P, Zhang S Y, Ju H X. Chem. Eur. J., 2010, 16: 10771-10777
[52] Zhang S Y, Tang S, Lei J P, Dong H F, Ju H X. J. Electroanal. Chem., 2011, 656: 285-288
[53] Wu L N, Lei J P, Zhang X J. Biosens. Bioelectron., 2008, 24: 644-649
[54] Tu W W, Lei J P, Ding L, Ju H X. Chem. Commun., 2009, 4227-4229
[55] Guo Y J, Deng L, Li J, Guo S J, Wang E K, Dong S J. ACS Nano, 2011, 5: 1282-1290
[56] Cho Y, Lee S S, Jung J H. Analyst, 2010, 135: 1551-1555
[57] Frasco M F, Vamvakaki V, Chaniotakis N. J. Nanopart. Res., 2010, 12: 1449-1458
[58] Zhang X R, Zhao Y Q, Li S G, Zhang S S. Chem. Commun., 2010, 9173-9175
[59] Wang G L, Yu P P, Xu J J, Chen H Y. J. Phys. Chem. C, 2009, 113: 11142-11148
[60] An Y R, Tang L L, Jiang X L, Chen H, Yang M C, Jin L T, Zhang S P, Wang C G, Zhang W. Chem. Eur. J., 2010, 16: 14439-14446
[61] Yildiz H B, Freeman R, Gill R, Willner I. Anal. Chem., 2008, 80: 2811-2816
[62] Kang Q, Yang L X, Chen Y F, Luo S L, Wen L F, Cai Q Y, Yao S Z. Anal. Chem., 2010, 82: 9749-9754
[63] Golub E, Pelossof G, Freeman R, Zhang H, Willner I. Anal. Chem. 2009, 81: 9291-9298
[64] Chen D, Zhang H, Li X, Li J H. Anal. Chem., 2010, 82: 2253-2261
[65] Tu W W, Dong Y T, Lei J P, Ju H X. Anal. Chem., 2010, 82: 8711-8716

[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[3] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[4] Bao Li, Lixin Wu. Liquid Condensed Matter Mediated Assembly and Functionality of Dispersoid [J]. Progress in Chemistry, 2022, 34(7): 1600-1609.
[5] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[6] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[7] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[8] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[9] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[10] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[11] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[12] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[13] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[14] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[15] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
Viewed
Full text


Abstract

Nanoassembly and Biosensing of Porphyrins