中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (10): 2103-2112 Previous Articles   Next Articles

• Review •

Application of Biomimetic Nanopore Fabricated in Self-Supported Membrane in Analytical Chemistry

Guo Zhijun1,2, Wang Jiahai2*, Hu Yaohui1*, Wang Erkang2*   

  1. 1. College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
    2. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received: Revised: Online: Published:
PDF ( 1679 ) Cited
Export

EndNote

Ris

BibTeX

In the past ten years, biomimetic single nanopores as single-molecule analytical nanodevices have been well studied, which was facilitated by controllable fabrication and engineering of various nanopores. The current used single nanopores originating from protein ion channels include two kinds of systems: gene engineered protein nanopore and solid-state nanopore. In comparison with gene engineered protein nanopore, solid-state nanopores have higher mechanical stability and can be easily functionalized with tremendous amount of chemical groups. Two methods including resistive-pulse sensor and ionic-current rectification are developed for nanopore technology, which are widely used for single molecule analysis and ionic-current modulation. FIB(focused ion beam) fabricated nanopore in SiN, SiO2 and graphene film is mainly used as resistive-pulse sensor.Conical-shaped nanopore made in tracked polymer membrane as well as with quartz capillary glass can be used as both resistive-pulse sensor and ionic-current rectifier. In the review, we comprehensively describe the recent progress and the challenging problems in this field.

Contents
1 Introduction
2 Application of protein nanopore
3 Application of FIB fabricated solid-state nanopore
4 Application of track-etched nanopore
5 Application of glass nanopore
6 Conclusions and outlook

CLC Number: 

[1] Doyle D A, Cabral J M, Pfuetzner R A, Kuo A, Gulbis J M, Cohen S L, Chait B T, MacKinnon R. Science, 1998, 280: 69-77
[2] Li J, Stein D, McMullan C, Branton D, Aziz M J, Golovchenko J A. Nature, 2001, 412: 166-169
[3] Spinney P S, Howitt D G, Smith R L, Collins S D. Nanotechnology, 2010, 21: art. no. 375301
[4] An R, Uram J D, Yusko E C, Ke K, Mayer M, Hunt A J. Opt. Lett., 2008, 33: 1153-1155
[5] Siwy Z, Dobrev D, Neumann R, Trautmann C, Voss K. Appl. Phys. A: Mater. Sci. Process., 2003, 76: 781-785
[6] Sexton L T, Horne L P, Martin C R. Mol. BioSyst., 2007, 3: 667-685
[7] Jung Y, Bayley H, Movileanu L. J. Am. Chem. Soc., 2006, 128: 15332-15340
[8] Siwy Z S. Adv. Funct. Mater., 2006, 16: 735-746
[9] Branton D, Deamer D W, Marziali A, Bayley H, Benner S A, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X H, Jovanovich S B, Krstic P S, Lindsay S, Ling X S S, Mastrangelo C H, Meller A, Oliver J S, Pershin Y V, Ramsey J M, Riehn R, Soni G V, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss J A. Nat. Biotechnol., 2008, 26: 1146-1153
[10] Deamer D W, Branton D. Acc. Chem. Res., 2002, 35: 817-825
[11] Ravin N V. Appl. Biochem. Microbio., 2010, 46: 663-670
[12] Quiles-Melero I, Garcia-Rodriguez J, Romero-Gomez M P, Gomez-Sanchez P, Mingorance J. Eur. J. Clin. Microbio. Infect. Dis., 2011, 30: 21-24
[13] Butler T Z, Pavlenok M, Derrington I M, Niederweis M, Gundlach J H. Proc. Natl. Acad. Sci. USA, 2008, 105: 20647-20652
[14] Wendell D, Jing P, Geng J, Subramaniam V, Lee T J, Montemagno C, Guo P X. Nat. Nanotechnol., 2009, 4: 765-772
[15] Kang X F, Cheley S, Rice-Ficht A C, Bayley H. J. Am. Chem. Soc., 2007, 129: 4701-4705
[16] Clarke J, Wu H C, Jayasinghe L, Patel A, Reid S, Bayley H. Nat. Nanotechnol., 2009, 4: 265-270
[17] Schadt E E, Turner S, Kasarskis A. Hum. Mol. Genet., 2010, 19: R227-R240
[18] Derrington I M, Butler T Z, Collins M D, Manrao E, Pavlenok M, Niederweis M, Gundlach J H. Proc. Natl. Acad. Sci. USA, 2010, 107: 16060-16065
[19] White R J, Ervin E N, Yang T, Chen X, Daniel S, Cremer P S, White H S. J. Am. Chem. Soc., 2007, 129: 11766-11775
[20] Olasagasti F, Lieberman K R, Benner S, Cherf G M, Dahl J M, Deamer D W, Akeson M. Nat. Nanotechnol., 2010, 5: 798-806
[21] Zhao Q T, de Zoysa R S S, Wang D Q, Jayawardhana D A, Guan X Y. J. Am. Chem. Soc., 2009, 131: 6324-6325
[22] Banerjee A, Mikhailova E, Cheley S, Gu L Q, Montoya M, Nagaoka Y, Gouaux E, Bayley H. Proc. Natl. Acad. Sci. USA, 2010, 107: 8165-8170
[23] Wu H C, Bayley H. J. Am. Chem. Soc., 2008, 130: 6813-6819
[24] Talaga D S, Li J L. J. Am. Chem. Soc., 2009, 131: 9287-9297
[25] Kang X F, Cheley S, Guan X Y, Bayley H. J. Am. Chem. Soc., 2006, 128: 10684-10685
[26] Hurt N, Wang H Y, Akeson M, Lieberman K R. J. Am. Chem. Soc., 2009, 131: 3772-3778
[27] Madampage C A, Andrievskaia O, Lee J S. Anal. Biochem., 2010, 396: 36-41
[28] Hall A R, Scott A, Rotem D, Mehta K K, Bayley H, Dekker C. Nat. Nanotechnol., 2010, 5: 874-877
[29] Smeets R M M, Kowalczyk S W, Hall A R, Dekker N H, Dekker C. Nano Lett., 2009, 9: 3089-3095
[30] Wanunu M, Dadosh T, Ray V, Jin J M, McReynolds L, Drndic M. Nat. Nanotechnol., 2010, 5: 807-814
[31] McNally B, Singer A, Yu Z L, Sun Y J, Weng Z P, Meller A. Nano Lett., 2010, 10: 2237-2244
[32] Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A. Nature, 2010, 467: 190-193
[33] Kleefen A, Pedone D, Grunwald C, Wei R, Firnkes M, Abstreiter G, Rant U, Tampeé R. Nano Lett., 2010, 10: 5080-5087
[34] Ali M, Schiedt B, Healy K, Neumann R, Ensinger A. Nanotechnology, 2008, 19: art. no. 085713
[35] Ali M, Bayer V, Schiedt B, Neumann R, Ensinger W. Nanotechnology, 2008, 19: art. no. 485711
[36] Mara A, Siwy Z, Trautmann C, Wan J, Kamme F. Nano Lett., 2004, 4: 497-501
[37] Ali M, Ramirez P, Mafe S, Neumann R, Ensinger W. ACS Nano, 2009, 3: 603-608
[38] Harrell C C, Siwy Z S, Martin C R. Small, 2006, 2: 194-198
[39] Scopece P, Baker L A, Ugo P, Martin C R. Nanotechnology, 2006, 17: 3951-3956
[40] Martin C R, Siwy Z S. Science, 2007, 317: 331-332
[41] Powell M R, Sullivan M, Vlassiouk I, Constantin D, Sudre O, Martens C C, Eisenberg R S, Siwy Z S. Nat. Nanotechnol., 2008, 3: 51-57
[42] Vlassiouk I, Smirnov S, Siwy Z. Nano Lett., 2008, 8: 1978-1985
[43] Vlassiouk I, Siwy Z S. Nano Lett., 2007, 7: 552-556
[44] Siwy Z S, Powell M R, Petrov A, Kalman E, Trautmann C, Eisenberg R S. Nano Lett., 2006, 6: 1729-1734
[45] Siwy Z S, Powell M R, Kalman E, Astumian R D, Eisenberg R S. Nano Lett., 2006, 6: 473-477
[46] Heins E A, Siwy Z S, Baker L A, Martin C R. Nano Lett., 2005, 5: 1824-1829
[47] Siwy Z, Trofin L, Kohli P, Baker L A, Trautmann C, Martin C R. J. Am. Chem. Soc., 2005, 127: 5000-5001
[48] Siwy Z, Heins E, Harrell C C, Kohli P, Martin C R. J. Am. Chem. Soc., 2004, 126: 10850-10851
[49] He Y, Gillespie D, Boda D, Vlassiouk I, Eisenberg R S, Siwy Z S. J. Am. Chem. Soc., 2009, 131: 5194-5202
[50] Harrell C C, Kohli P, Siwy Z, Martin C R. J. Am. Chem. Soc., 2004, 126: 15646-15647
[51] Gillespie D, Boda D, He Y, Apel P, Siwy Z S. Biophys. J., 2008, 95: 609-619
[52] Kalman E B, Sudre O, Vlassiouk I, Siwy Z S. Anal. Bioanal. Chem., 2009, 394: 413-419
[53] Vlassiouk I, Smirnov S, Siwy Z. ACS Nano, 2008, 2: 1589-1602
[54] Hou X, Dong H, Zhu D B, Jiang L. Small, 2010, 6: 361-365
[55] Xia F, Guo W, Mao Y D, Hou X, Xue J M, Xia H W, Wang L, Song Y L, Ji H, Qi O Y, Wang Y G, Jiang L. J. Am. Chem. Soc., 2008, 130: 8345-8350
[56] Hou X, Guo W, Xia F, Nie F Q, Dong H, Tian Y, Wen L P, Wang L, Cao L X, Yang Y, Xue J M, Song Y L, Wang Y G, Liu D S, Jiang L. J. Am. Chem. Soc., 2009, 131: 7800-7805
[57] Guo W, Xia H W, Xia F, Hou X, Cao L X, Wang L, Xue J M, Zhang G Z, Song Y L, Zhu D B, Wang Y G, Jiang L. Chemphyschem, 2010, 11: 859-864
[58] Kececi K, Sexton L T, Buyukserin F, Martin C R. Nanomedicine, 2008, 3: 787-796
[59] Harrell C C, Choi Y, Horne L P, Baker L A, Siwy Z S, Martin C R. Langmuir, 2006, 22: 10837-10843
[60] Sexton L T, Mukaibo H, Katira P, Hess H, Sherrill S A, Horne L P, Martin C R. J. Am. Chem. Soc., 2010, 132: 6755-6763
[61] Sexton L T, Horne L P, Sherrill S A, Bishop G W, Baker L A, Martin C R. J. Am. Chem. Soc., 2007, 129: 13144-13152
[62] Wang J, Martin C R. Nanomedicine, 2008, 3: 13-20
[63] Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O. J. Am. Chem. Soc., 2008, 130: 16351-16357
[64] Ali M, Yameen B, Cervera J, Ramirez P, Neumann R, Ensinger W, Knoll W, Azzaroni O. J. Am. Chem. Soc., 2010, 132: 8338-8348
[65] Vlassiouk I, Kozel T R, Siwy Z S. J. Am. Chem. Soc., 2009, 131: 8211-8220
[66] Ding S, Gao C L, Gu L Q. Anal. Chem., 2009, 81: 6649-6655
[67] Ervin E N, White R J, White H S. Anal. Chem., 2009, 81: 533-537
[68] Gao C L, Ding S, Tan Q L, Gu L Q. Anal. Chem., 2009, 81: 80-86
[69] Gyurcsanyi R E, Vigassy T, Pretsch E. Chem. Commun., 2003, 2560-2561
[70] Schibel A E P, Edwards T, Kawano R, Lan W J, White H S. Anal. Chem., 2010, 82: 7259-7266
[71] Shim J H, Kim J, Cha G S, Nam H, White R J, White H S, Brown R B. Anal. Chem., 2007, 79: 3568-3574
[72] Shim J W, Gu L Q. Anal. Chem., 2007, 79: 2207-2213
[73] Umehara S, Karhanek M, Davis R W, Pourmand N. Proc. Natl. Acad. Sci. USA, 2009, 106: 4611-4616
[74] Wang G L, Bohaty A K, Zharov I, White H S. J. Am. Chem. Soc., 2006, 128: 13553-13558
[75] Wang G L, Zhang B, Wayment J R, Harris J M, White H S. J. Am. Chem. Soc., 2006, 128: 7679-7686
[76] White H S, Bund A. Langmuir, 2008, 24: 2212-2218
[77] White H S, Bund A. Langmuir, 2008, 24: 12062-12067
[78] Zhang B, Galusha J, Shiozawa P G, Wang G L, Bergren A J, Jones R M, White R J, Ervin E N, Cauley C C, White H S. Anal. Chem., 2007, 79: 4778-4787
[79] Zhang B, Zhang Y H, White H S. Anal. Chem., 2004, 76: 6229-6238
[80] Zhang B, Zhang Y H, White H S. Anal. Chem., 2006, 78: 477-483
[81] Uram J D, Ke K, Hunt A J, Mayer M. Small, 2006, 2: 967-972
[82] Uram J D, Ke K, Hunt A J, Mayer M. Angew. Chem. Int. Ed., 2006, 45: 2281-2285

[1] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[2] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.
[3] Feng He, Ran Ji, Feng He*. Recent Advances in Graphene Based Separation Membranes [J]. Progress in Chemistry, 2017, 29(8): 833-845.
[4] Linfeng Wei, Jianzhong Ma, Wenbo Zhang, Yan Bao. The Amphipathy Adjustment of Graphene Oxide and Graphene Quantum Dots and Their Application in Pickering Emulsion Polymerization [J]. Progress in Chemistry, 2017, 29(6): 637-648.
[5] Hao Rui, Zhang Congyun, Lu Ya, Zhang Dongjie, Hao Yaowu, Liu Yaqing. Preparation and Surface-Enhanced Raman Scattering Effect of Graphene Oxide/(Au/Ag) Hybrid Materials [J]. Progress in Chemistry, 2016, 28(8): 1186-1195.
[6] Gao Yurong, Huang Pei, Sun Peipei, Wu Min, Huang Yong. Preparation and Application of Graphene/Cellulose Composites [J]. Progress in Chemistry, 2016, 28(5): 647-656.
[7] Rao Honghong, Xue Zhonghua, Wang Xuemei, Zhao Guohu, Hou Huihui, Wang Hui. Electrochemical Sensors Based on Electrochemically Reduced Graphene Oxide [J]. Progress in Chemistry, 2016, 28(2/3): 337-352.
[8] Yu Zhiyuan, Ding Wande, Wang Zhining. Preparation and Application of Aquaporin Containing Biomimetic Membranes for Water Treatment and Desalination [J]. Progress in Chemistry, 2015, 27(7): 953-962.
[9] Liu Xiaobo, Kou Zongkui, Mu Shichun. Porous Graphene Materials [J]. Progress in Chemistry, 2015, 27(11): 1566-1577.
[10] Wang Xi, Guo Xiaoyan, Shao Huaiqi, Zhou Qixing, Hu Wanli, Song Xiaojing. Methods, Performances and Mechanisms of Separation Membrane Modified by Graphene and Graphene Oxide [J]. Progress in Chemistry, 2015, 27(10): 1470-1480.
[11] Zhou Li, Deng Huiping*, Wan Junli, Zhang Ruijin. Synthesis and Adsorption of Graphene-Based Iron Oxide Magnetic Nanocomposites [J]. Progress in Chemistry, 2013, 25(01): 145-155.
[12] Zhang Hao, Cui Hua. Fluorescent Sensors Based on Graphene Oxide [J]. Progress in Chemistry, 2012, 24(08): 1554-1559.
[13] Zhang Zhilei, Wang Zhining, Gao Xueli, Gao Congjie. Progress in Supported Phospholipid Bilayers [J]. Progress in Chemistry, 2012, 24(05): 852-862.
[14] Xu Xiujuan Qin Jingui Li Zhen. Research Advances of Graphene [J]. Progress in Chemistry, 2009, 21(12): 2559-2567.
[15] Bo Zhou1,2,Runguang Sun1,Lihua Wang2,Shiping Song2**,Chunhai Fan2**. Direct Protein Electrochemistry and Its Applications [J]. Progress in Chemistry, 2006, 18(0708): 1009-1013.